A+ A A-

 

Ciepło podczerwone, które zwierzę wydziela ze swojego ciała może być "oglądane" przy użyciu kamery termowizyjnej. Wyszkolony lekarz może zobaczyć wzory ciepła, które pozwolą mu dowiedzieć się o takich szczegółach jak prawidłowy lub nieprawidłowy przepływ krwi, w szczególności u zwierząt. Przepływ krwi może być albo zwiększony lub zmniejszony, przy czym obie wartości wskazują problemy zdrowotne.

Fizjologiczne obrazowanie jest funkcją metaboliczną. Fizjologiczne obrazy mogą się zmienić i prawdopodobne jest pojawienie się anatomicznych zakłóceń. Termografia (obrazy termiczne) jest uważana za fizjologiczne obrazowanie, ponieważ zmienia się tak, jak metabolizm zwierzęcia. Przykładem może być ścięgno, które nagrzewa się podczas bólu, a zjawisko to może być dostrzeżone.

 

Rys.1 Pomiary pomagają weterynarzom wykryć różnice temperatur, a tym samym wczesne wykrycie zmian zapalnych stawów, ścięgien i tkanek zwierząt.

Termografia koni

Termografię można określić jako jakościową metodę pomiaru temperatury. Kamera automatycznie mierzy temperaturę w podczerwieni i pokazuje gotowy obraz termiczny w różnych kolorach dla różnych temperatur. A "hot spot" wskazuje na stan zapalny lub zwiększone krążenie. Gorące punkty są na ogół umiejscowione na skórze, bezpośrednio pokrywając obrażenia. Zimne punkty są objawem zmniejszenia dopływu krwi zazwyczaj spowodowanych obrzękiem, zakrzepem czy bliznami.

Zmiany temperatury znalezione przy użyciu aparatu termograficznego, są podstawą do rozpoznania problemu. Jeśli nogi zwierzęcia zostały obdrapane, pokryte pęcherzami, czy też nadwyrężone, wszystkie takie obszary charakteryzują się zwiększoną temperaturą. Symetria termiczna jest podstawową regułą u zwierząt - można porównać jeden obszar anatomiczny z obszar w tej samej okolicy po drugiej stronie (np. zewnętrzna część lewej nogi wraz z zewnętrzną częścią prawej nogi przednich kończyn).

Stan zapalny

Termografia może być wykorzystana również do określenia, czy rozwija się stan zapalny w miejscu, które wywołało ból w badaniu palpacyjnym, lub do wykrycia obszaru o zwiększenym przepływie krwi, co nie powoduje szczególnego bólu oraz oznak (podkliniczne stany zapalne). Większość koni oprócz głównego problemu związanego z kalectwem cierpi na wiele innych chorób. Termografia pomaga w wykrywaniu obszarów chorobowych oraz wtórnych problemów.

Stwierdzono, że ścięgna i stawy pokazują zmiany zapalne nawet dwa tygodnie wcześniej, zanim klinicznie kulenie jest oczywiste.

Uszkodzenie mięśni

Kolejną cenną zaletą jest zastosowanie termografii w wykrywaniu obrażeń mięśni. Urządzenie pokaże nam gdzie znajduje się obszar związany z zapaleniem mięśnia lub grupy mięśni. Potrafimy wywnioskować przyszły zanik mięśni, zanim stanie się problemem klinicznym. Zanik mięśnia uważa się za obszar który wywołał spadek w obiegu krwi w porównaniu z powtarzalnym obszarem z drugiej strony.

Uszkodzenia nerwów

Uraz nerwu w wyniku bezpośredniego urazu lub powrotu problemu wywołanego innym urazem lub chorobą może mieć wpływ na przepływ krwi i dzięki temu będzie widoczne na obrazie termograficznym.

Profilaktyka

Termografia może być także stosowana do oceny: układu naczyniowego, przepływu krwi, stanu tkanek przed i po ćwiczeniach.

Inne zastosowania obejmują: egzamin wstępny zakupu, czy siodło idealnie pasuje, pomoc w szkoleniach, uniknięcie szkody przed wyścigiem poprzez sprawdzenie równowagi termicznej kopyt, następujące po uzdrowieniu uszkodzonego ścięgna itp.

Jak widać, istnieje wiele różnych zastosowań tego nieinwazyjnego badania, będącego niezawodnym narzędziem diagnostycznym.

Właściwości

FLIR T600 - 172 800 pikseli
Rozdzielczość - 480 x 360

Wyjatkowa gwarancja FLIR Systems: 2-5-10

Główne zalety serii T 6xx:

  • UltraMax – jeszce wieksza rozdzielczość na zdjęciach termowizyjnych - teraz kamera termowizyjna FLIR pozwala na wykonywanie zdjęć termowizyjnych z 4x wiekszą rozdzielczością
  • MSX – zaawansowana technologia FLIR pozwala połączyc obraz podczerwony z obrazem widzianym, zaowocowało to w uzyskaniu niesamowitej jakości oraz szczegółowości obrazu
  • Komunikacja bezprzewodowa – wbudowany modół Wi-Fi pozwala na komunikację z urzadzeniami mobilnymi takimi jak telefony komórkowe, laptopy. Dzięki darmowym aplikacjom mozna przesyłac dane do urządzeń mobilnych, zdalnie sterować kamerą, ogladac obraz z kamery w czasie rzeczywistym
  • Notatki na ekranie – dotykowy ekran pozwala na nanoszenie notatek za pomocą rysika, nie ma potrzeby czekać, aż zdjęcie zostanie przeslane do komputera. Jesli znajdziesz jakiś punkt na ktory trzeba zwrócic szczególna uwage - zaznacz go!
  • Notatki głosowe – masz watpliwości, chcesz cos podkreślić, masz zajete ręce - nagraj notatke głosowa i dołącz ja do zdjecia.
  • Obrotowy obiektyw - pozwala na pochylenie obiektywu w zakresie 120º, umozliwia wykonywanie zdjęć w trudno dostępnych miejscach.
  • Fuzja termiczna oraz obraz w obrazie - pozwala na umieszczenie dowolnie skalowalnego obrazu termicznego w obrazie widzialnym
  • Wbudowany GPS - dodaj do obrazu współrzędne geograficzne
  • Nastawa ostrości - ręczna i automatyczna nastawa ostrości
  • Wbudowany kompas - podaje kierunek w jakim wykonywane jest obrazowanie termiczne

Specyfikacja

Specyfikacja techniczna Kamery termowizyjnej T600:

FLIR T600
Dokładność ±2% lub 2°C
Rozdzielczość detektora 172800 (480 x 360)
Czułość termiczna <0.04°C
Zakres pomiaru temperatury -40°C do 650°C (-40°F to 1202°F)
Wielkość wyświetlacza 4.3”/Panoramiczny
Wizjer Nie
Tryby pomiarowe 6 trybów: punkt centralny, punkt gorący (powierzchnia); punkt zimny (powierzchnia); brak pomiarów; ustawienia użytkownika 1; ustawienia użytkownika 2
Punkty pomiarowe 10 przesuwalnych
Częstotliwość odświeżania 30 Hz
FOV 25° × 19°
FOV taki jak w obiektywie Tak
Opcjonalne obiektywy 6: 7° & 15° Tele, 45° & 80° Szer.; Makro: 100 um, 50 um, 25 um
Ustawienie ostrości Manualne & Automatyczne
Ciągły auto-fokus Nie
Minimalna odległość ostrzenia 0.82 ft (0.25 m)
Zdjęcie radiometryczne JPEG zapisane na kartę SD Tak
Film MPEG4 zapisany na kartę SD (nie radiometryczny) Tak
Palety 7: Arktyczna, Gorąca biel, Gorąca czerń, Żelazo, Lawa, Tęcza, Tęcza HC
Oprogramowanie FLIR Tools Tak
Raport w kamerze Tak
Czas pracy na baterii >2.5 godzin
Kamera wbudowana 5 MP
Wbudowane podświetlenie LED Tak
Ekran dotykowy Tak
Zoom cyfrowy
Alarm izolacji Tak
Alarm punktu rosy Tak
Połączenie MeterLink® Tak
Wskaźnik laserowy Tak
Indykator wskaźnika na obrazie IR Tak
Kompas Tak
GPS Tak
Korekcja dla okna wziernikowego IR Window Tak
Delta T Tak
Obraz w obrazie Dostosowanie PIP
Fuzja termiczna Tak
MSX™ Obrazowanie multispektralne Tak
Szkic na ekranie Tak
Szkic na zdjęciu IR Tak
Notatki tekstowe/głosowe Tak
Oprogramowanie FLIR Tools Mobile na Apple® & Android™ Tak
Streaming video Tak
Zdalne sterowanie FLIR App Remote Control Tak
Odporność na upadek (2 metry/6.6 stóp) Tak
Waga (włącznie z bateriami) 1.3 kg (2.87 lbs)

Zastosowanie kamer T600:

  • Wykonywanie pomiarów testowych instalacji 
  • Wyszukiwanie problemów z urządzeniami wentylacji, klimatyzacji
  • Znajdowanie usterek związanych z instalacjami sanitarnymi
  • Audyty energetyczne budynków

Zalety kamer termowizynych z serii T 6xx:

  • instrukcja obsługi w języku polskim
  • podświetlane przyciski
  • niska waga 1,3 kg
  • dotykowy monitor
  • 10 lat gwarancji na detektor
  • 2 lata gwarancji na kamerę
  • 2,5 godzin pracy na zasilaniu bateryjnym
  • certyfikat kalibracji w cenie zestawu

Zrzuty ekranów

Przykładowe zrzuty ekranów

 

breaker-panel-infrared breaker-panel-infrared
discharge-pipe discharge-pipe
single-phase-transformer single-phase-transformer
motor-bearing-infrared motor-bearing-infrared

MSX

 

flir-t640-motors flir-t640-motors
flir-t640-msx-motors flir-t640-msx-motors
flir-t640-panel flir-t640-panel
flir-t640-msx-panel flir-t640-msx-panel
flir-t640-recessed-lights flir-t640-recessed-lights
flir-t640-msx-recessed-lights flir-t640-msx-recessed-lights

Zdjęcia aplikacji

Przykładowe zdjęcia aplikacji kamery termowizyjnej T600:

 

 

Podczas gdy mieszkańcy hrabstwa Mason spędzają mroźną zimową noc w ciepłym domu, przy telewizorze, nad kolacją i z włączoną pralką Chris Jorgensen z zakładu użyteczności publicznej Mason Public Utility District (PUD) 3 sprawdza stan linii enetrgetycznych i sprzętu.

Zakład PUD 3 dostarcza usługi energetyczne i telekomunikacyjne dla ponad 34 000 osób w stanie Waszyngton w USA. Przegapienie potencjalnego problemu może oznaczać odcięcie od prądu tysięcy osób.

 

 

pdf icona h60

 

Sprawdź jak zakład energetyczny w stanie Waszyngton wykorzystuje kamery termowizyjne FLIR Systems

 

Wykorzystanie termowizji przez zakład energetyczny w stanie Waszyngton do utrzymania dostaw prądu

 

  

W Polsce dystrybutorem kamer termowizyjnych FLIR Systems jest iBros technic. iBros technic pomoże w doborze rozwiązania, stworzy lub dołoży potrzebne elementy dodatkowe i akcesoria do indywidualnych potrzeb.

Zapraszamy do kontaktu  +48 12 3767051  Ten adres pocztowy jest chroniony przed spamowaniem. Aby go zobaczyć, konieczne jest włączenie w przeglądarce obsługi JavaScript. 

Zakażenia, takie jak COVID-19, SARS i inne choroby, mogą wywoływać objawy, takie jak podwyższona temperatura skóry - możliwy objaw infekcji. Chociaż kamery FLIR nie są w stanie wykrywać ani diagnozować wirusów, te zarejestrowane w USA kamery FDA stanowią prostą, wstępną metodę, która może być pomocna przy zapobieganiu dalszym zarażeniom.

 

FLIR EST to nowa seria kamer termowizyjnych zaprojektowanych specjalnie do stosowania w pomiarach podwyższonej temperatury skóry.

 

 


Modele serii EST nowy tryb FLIR Screen-EST, który oferuje trzy ustawienia: Tryb Ręczny; Tryb Operatora, którym można sterować za pomocą dołączonego przycisku obsługi zdalnej z Bluetooth®; oraz Tryb Automatyczny dla zastosowań w miejscach o dużej przepustowości lub ograniczonym personelu. W trybach Operator i Auto dostępna jest funkcja graficznego wskazywania pozytywnego/negatywnego wyniku pomiaru, można również ustawić alarmy wizualne i dźwiękowe, które wskazują, gdy zmierzona temperatura danej osoby jest wyższa od średniej próbki. Aby jeszcze bardziej zwiększyć dokładność, tryb przesiewania automatycznie generuje średnią temperaturę próbki i porównuje temperaturę skóry osoby z tym poziomem odniesienia, zmniejszając niepewność pomiaru wynikającą z naturalnych wahań temperatury ciała i biorąc pod uwagę specyficzne warunki środowiska. Kamera automatycznie aktualizuje średnią próbkowaną w trybie automatycznym, natomiast w trybie operatora użytkownik jest informowany o konieczności wykonania okresowej aktualizacji średniej poprzez naciśnięcie przycisku operacji zdalnych.


Zgodność z oprogramowaniem FLIR Screen-EST Desktop, zintegrowanym mocowaniem do statywu i zasilaniem zewnętrznym sprawia, że kamery te stanowią dobrą alternatywę dla stałych instalacji.

 

Tryb FLIR Screen-EST™ to metoda wykorzystująca kamerę do uproszczonego pomiaru podwyższonej temperatury skóry. Ten tryb może wyświetlać alarm, gdy zostanie wykryta temperatura wyższa niż próg zdefiniowany przez użytkownika w stosunku do średniej wartości próbki. Średnia może być aktualizowana ręcznie za pomocą przycisku obsługi zdalnej w trybie operatora lub automatycznie przy każdym nowym badaniu w trybie automatycznym. Jeśli tryb badania wykryje osobę z podwyższoną temperaturą skóry, można ją następnie ocenić za pomocą urządzenia medycznego, takiego jak termometr. W ten sposób tryb FLIR Screen-EST zapewnia szybszą, bezpieczniejszą i bardziej niezawodną metodę przeprowadzania badań przesiewowych podwyższonej temperatury skóry.

 

FLIR Screen-EST™ Desktop to komputerowe oprogramowanie dla kamer termowizyjnych FLIR serii T, Exx i Axxx. Oprogramowanie wdraża automatyczne narzędzia pomiarowe, takie jak wykrywanie twarzy i automatyczne pobieranie próbek, które skracają czas badań u osób fizycznych do dwóch sekund. Dzięki szybkiej pracy i dużej wydajności oprogramowanie FLIR Screen-EST Desktop jest preferowanym rozwiązaniem do badań przesiewowych wykonywanych w przy wejściach, w punktach kontrolnych i innych obszarach o dużym natężeniu ruchu przy jednoczesnym zachowaniu zalecanych wytycznych dotyczących dystansu społecznego.

 

 

ZASTRZEŻENIE: Urządzenia FLIR są przeznaczone do stosowania jako uzupełnienie procedur klinicznych w badaniach temperatury powierzchni skóry. Różne czynniki środowiskowe i metodologiczne mogą wpływać na obrazowanie termiczne, dlatego nie należy na nim polegać jako jedynym wyznaczniku temperatury ciała danej osoby. Do zidentyfikowania podwyższonej temperatury ciała konieczne będzie użycie urządzenia medycznego.

 

 pdf

 

  >> Karta techniczna FLIR EXX-EST

 

 

FLIR EXX EST

 

DANE TECHNICZNE:

Dane obrazowania

FLIR E54-EST

FLIR E86-EST

Rozdzielczość IR

320 x 240 pikseli

464 x 384 pikseli

Czułość termiczna / NETD

<40 mK @ 30°C

<40 mK @ 30°C: obiektyw 24°
<30 mK @ 30°C: obiektyw 42°

Częstotliwość

30 Hz

Dane optyki

 

 

Obiektyw w zestawie

Obiektyw stały, 24° (17 mm)

24° (17 mm) lub 42° (10 mm)

Pole widzenia (FOV)

24°×18°

24°×18° lub 42°×32°

Ostrość

Ręczna

Ciągła, dalmierzem laserowym (LDM) za jednym naciśnięciem przycisku, na bazie kontrastu za jednym naciśnięciem przycisku, ręczna

Tryb badań przesiewowych

 

 

Zakres temperatury

15°C do 45°C

Dokładność

±0.3°C

Prezentacja obrazu

 

 

Wyjście wideo

DisplayPort przez USB Typu-C

Cyfrowy streaming wideo

Jednocześnie termiczne i widzialne, USB Typu-C

Obsługa i kontrola

Na ekranie kamery, USB Typu-C

Wyświetlacz

4'' ekran dotykowy LCD, 640 x 480 pikseli

Dane ogólne

 

 

Zakres temperatury pracy

-15°C do 50°C

Typ baterii

Akumulator litowo-jonowy

Zasilanie

Akumulator litowo-jonowy, > 2,5 godziny (typowe zastosowanie)

Zasilanie zewnętrzne

Zasilacz 90–260 V AC, 50/60 Hz

Wymiary (L x W x H)

278.4 × 116.1 × 113.1 mm

Waga

1 kg

Montaż na statywie

UNC ¼”-20

Zawartość zestawu

Kamera termowizyjna z obiektywem, bateria (2 szt.), ładowarka do baterii, osłona przednia, karabińczyk, paski (na rękę i nadgarstek), twarda walizka transportowa, smycze, osłony obiektywu, ściereczka do czyszczenia obiektywu, zasilacze, śrubokręt Torx T10, śruby, kable (USB 2.0 A na USB Typ-C, USB Typ-C na USB Typ-C, USB Typ-C na HDMI), USB-C na USB Typ-A z dołączonym zasilaczem, przycisk zdalej obsługi, karta SD 8GB, dokumentacja w wersji drukowanej.

E54 Est

Zakażenia, takie jak COVID-19, SARS i inne choroby, mogą wywoływać objawy, takie jak podwyższona temperatura skóry - możliwy objaw infekcji. Chociaż kamery FLIR nie są w stanie wykrywać ani diagnozować wirusów, te zarejestrowane w USA kamery FDA stanowią prostą, wstępną metodę, która może być pomocna przy zapobieganiu dalszym zarażeniom.

 

FLIR EST to nowa seria kamer termowizyjnych zaprojektowanych specjalnie do stosowania w pomiarach podwyższonej temperatury skóry.

 

 


Modele serii EST nowy tryb FLIR Screen-EST, który oferuje trzy ustawienia: Tryb Ręczny; Tryb Operatora, którym można sterować za pomocą dołączonego przycisku obsługi zdalnej z Bluetooth®; oraz Tryb Automatyczny dla zastosowań w miejscach o dużej przepustowości lub ograniczonym personelu. W trybach Operator i Auto dostępna jest funkcja graficznego wskazywania pozytywnego/negatywnego wyniku pomiaru, można również ustawić alarmy wizualne i dźwiękowe, które wskazują, gdy zmierzona temperatura danej osoby jest wyższa od średniej próbki. Aby jeszcze bardziej zwiększyć dokładność, tryb przesiewania automatycznie generuje średnią temperaturę próbki i porównuje temperaturę skóry osoby z tym poziomem odniesienia, zmniejszając niepewność pomiaru wynikającą z naturalnych wahań temperatury ciała i biorąc pod uwagę specyficzne warunki środowiska. Kamera automatycznie aktualizuje średnią próbkowaną w trybie automatycznym, natomiast w trybie operatora użytkownik jest informowany o konieczności wykonania okresowej aktualizacji średniej poprzez naciśnięcie przycisku operacji zdalnych.


Zgodność z oprogramowaniem FLIR Screen-EST Desktop, zintegrowanym mocowaniem do statywu i zasilaniem zewnętrznym sprawia, że kamery te stanowią dobrą alternatywę dla stałych instalacji.

 

Tryb FLIR Screen-EST™ to metoda wykorzystująca kamerę do uproszczonego pomiaru podwyższonej temperatury skóry. Ten tryb może wyświetlać alarm, gdy zostanie wykryta temperatura wyższa niż próg zdefiniowany przez użytkownika w stosunku do średniej wartości próbki. Średnia może być aktualizowana ręcznie za pomocą przycisku obsługi zdalnej w trybie operatora lub automatycznie przy każdym nowym badaniu w trybie automatycznym. Jeśli tryb badania wykryje osobę z podwyższoną temperaturą skóry, można ją następnie ocenić za pomocą urządzenia medycznego, takiego jak termometr. W ten sposób tryb FLIR Screen-EST zapewnia szybszą, bezpieczniejszą i bardziej niezawodną metodę przeprowadzania badań przesiewowych podwyższonej temperatury skóry.

 

FLIR Screen-EST™ Desktop to komputerowe oprogramowanie dla kamer termowizyjnych FLIR serii T, Exx i Axxx. Oprogramowanie wdraża automatyczne narzędzia pomiarowe, takie jak wykrywanie twarzy i automatyczne pobieranie próbek, które skracają czas badań u osób fizycznych do dwóch sekund. Dzięki szybkiej pracy i dużej wydajności oprogramowanie FLIR Screen-EST Desktop jest preferowanym rozwiązaniem do badań przesiewowych wykonywanych w przy wejściach, w punktach kontrolnych i innych obszarach o dużym natężeniu ruchu przy jednoczesnym zachowaniu zalecanych wytycznych dotyczących dystansu społecznego.

 

 

ZASTRZEŻENIE: Urządzenia FLIR są przeznaczone do stosowania jako uzupełnienie procedur klinicznych w badaniach temperatury powierzchni skóry. Różne czynniki środowiskowe i metodologiczne mogą wpływać na obrazowanie termiczne, dlatego nie należy na nim polegać jako jedynym wyznaczniku temperatury ciała danej osoby. Do zidentyfikowania podwyższonej temperatury ciała konieczne będzie użycie urządzenia medycznego.

 

 pdf

 

  >> Karta techniczna FLIR T5XX-EST

 

 

T540 est

 

DANE TECHNICZNE:

Dane obrazowania

FLIR T540-EST

FLIR T560-EST

Rozdzielczość IR

464 x 384 pikseli

640 x 480 pikseli

Czułość termiczna / NETD

<40 mK @ 30°C: obiektyw 24°
<30 mK @ 30°C: obiektyw 42°

Częstotliwość

30 Hz

Dane optyki

Obiektyw w zestawie

24° (17 mm) lub 42° (10 mm)

Pole widzenia (FOV)

24°×18° lub 42°×32°

Ostrość

Ciągła, dalmierzem laserowym (LDM) za jednym naciśnięciem przycisku, na bazie kontrastu za jednym naciśnięciem przycisku, ręczna

Tryb badań przesiewowych

Zakres temperatury

15°C do 45°C

Dokładność

±0.3°C

Prezentacja obrazu

Wyjście wideo

DisplayPort przez USB Typu-C

Cyfrowy streaming wideo

Jednocześnie termiczne i widzialne, USB Typu-C

Obsługa i kontrola

Na ekranie kamery, USB Typu-C

Wyświetlacz

4'' ekran dotykowy LCD, 640 x 480 pikseli

Dane ogólne

Zakres temperatury pracy

-15°C do 50°C

Typ baterii

Akumulator litowo-jonowy

Zasilanie

Akumulator litowo-jonowy, > 4 godzin (typowe zastosowanie) @25°C

Zasilanie zewnętrzne

Zasilacz 90–260 V AC, 50/60 Hz

Wymiary (L x W x H)

140 × 201.3 × 84.1 mm

Waga

1,4 kg

Montaż na statywie

UNC ¼”-20

Zawartość zestawu

Kamera termowizyjna z obiektywem, osłony obiektywu (przednia i tylna), ściereczka do czyszczenia obiektywu, bateria (2 szt.), ładowarka do baterii, zasilacze, paski (osłony obiektywu i na szyję), twarda walizka transportowa, kable (USB 2.0 A na USB Typ-C, USB Typ-C na USB Typ-C, USB Typ-C na HDMI, PD adapter), USB-C na USB Typ-A z dołączonym zasilaczem, przycisk zdalej obsługi, karta SD 8GB, dokumentacja w wersji drukowanej.

T5xx est

 

     Z JAK DUŻEJ ODLEGŁOŚCI MOŻNA MIERZYĆ? 

     Kluczowy jest stosunek odległości do wielkości plamki pomiarowej 

 

 

 

 

Jeśli niedawno została zakupiona kamera termowizyjna, możesz się zastanawiać, z jak dużej odległości można nią wykonywać pomiary. Enewntualnie chcesz kupić kamerę, ale nie masz pewności, która będzie dokładnie mierzyć cel i jednocześnie zmieści się w budżecie. Odpowiedź na pytanie „Z jak dużej odległości można mierzyć?” zależy od takich czynników, jak rozdzielczość, chwilowe pole widzenia (IFOV), obiektywy, wielkość obiektu i innych. 

 

Można to porównać do badania wzroku w gabinecie lekarskim. Gdy spojrzysz na tablicę do badania wzroku z krzesła w gabinecie, możesz być w stanie zobaczyć litery w najmniejszym wierszu – ale z jakiej maksymalnej odległości będzie można je odczytać (czyli „zmierzyć” je)? Jeśli masz doskonały wzrok (20/20), możesz odczytać najmniejsze litery z większej odległości. W takim przypadku wzrok 20/20 odpowiadałby kamerze termowizyjnej o wysokiej rozdzielczości. Jeśli Twój wzrok nie jest doskonały, możesz poprawić go okularami (czyli dodać szkło powiększające do kamery) lub podejść bliżej tablicy do badania wzroku (czyli zmniejszyć odległość od celu). 

 

Ważne jest zrozumienie, czym jest stosunek odległości do wielkości plamki pomiarowej. Stosunek odległości do średnicy plamki pomiarowej to wartość informująca o tym, jak daleko można być od celu o określonych wymiarach i nadal uzyskiwać dokładny pomiar temperatury. 

STOSUNEK ODLEGŁOŚCI DO WIELKOŚCI PLAMKI POMIAROWEJ 1

W miarę oddalania się od mierzonego obiektu tracona jest zdolność do dokładnego pomiaru temperatury

 

 

Aby zapewnić najdokładniejszy pomiar temperatury, na celu powinno być skupionych jak najwięcej pikseli detektora kamery. Zapewni to więcej szczegółów na obrazie termowizyjnym. W miarę oddalania się od mierzonego obiektu tracona jest zdolność do dokładnego pomiaru temperatury. Im większa rozdzielczość kamery (większa liczba pikseli w celu), tym bardziej prawdopodobne jest uzyskanie dokładnych wyników z większej odlegości. Zoom cyfrowy nie poprawia dokładności, więc wyższa rozdzielczość lub wąskie pole widzenia ma kluczowe znaczenie. 

 

Załóżmy, że chcesz uzyskać dokładny pomiar temperatury 20-milimetrowego celu znajdującego się w odległości 15 metrów od kamery termowizyjnej. Jak dowiedzieć się, czy dana kamera może to zrobić? Trzeba sprawdzić dane techniczne kamery – pole widzenia i rozdzielczość. Załóżmy, że rozdzielczość kamery wynosi 320 × 240, a obiektyw ma 24-stopniowe pole widzenia w poziomie. 

 

STOSUNEK ODLEGŁOŚCI DO WIELKOŚCI PLAMKI POMIAROWEJ 2

IFOV jest rzutem kątowym jednego piksela detektora na obrazie w podczerwieni. Powierzchnia, jaką może widzieć każdy piksel, zależy od odległości od celu dla danego obiektywu.

 

 

Najpierw trzeba obliczyć IFOV w miliradianach (mrad) z następującego wzoru: 

IFOV = (FOV/liczba pikseli*) × [(3,14/180)(1000)]

* Użyj liczby pikseli, która odpowiada polu widzenia Twojego obiektywu (w poziomie/ pionie) 

 

Jako że obiektyw ma 24 stopnie FOV w poziomie, należy podzielić 24 przez poziomą rozdzielczość kamery w pikselach – w tym przypadku 320. Następnie trzeba pomnożyć tę liczbę przez 17,44, co jest wynikiem (3,14/180) (1000) z powyższego równania. 

(24/320) × 17,44 = 1,308 mrad

Wiedząc, że IFOV wynosi 1,308 mrad, trzeba obliczyć IFOV w milimetrach z następującego równania:

IFOV (mm): (1,308/1000) × 15 000* mm = 19,62 mm

* Odległość od celu 

 

Co oznacza ta liczba? Stosunek odległości do średnicy plamki pomiarowej wynosi 19,62:15 000. Ta wartość jest mierzalną wielkością jednego piksela (1 × 1). Mówiąc w uproszczeniu, wynik informuje, że kamera może zmierzyć plamkę pomiarową 19,62 mm z odległości 15 metrów.  

 

Ten pomiar pojedynczego piksela nazywany jest „teoretycznym stosunkiem odległości do wielkości plamki pomiarowej ” (SSR). Niektórzy producenci podają teoretyczny stosunek odległości do średnicy plamki pomiarowej w danych technicznych produktów. Chociaż można to uznać za rzeczywisty stosunek odległości do średnicy plamki pomiarowej, jest to zwodnicze, ponieważ nie musi to być najbardziej dokładna wartość. Jest tak dlatego, że informuje tylko o temperaturze bardzo małego obszaru w obrębie pojedynczego piksela. Jak wspomniano wcześniej, w celu zapewnienia największej dokładności należy uzyskać jak najwięcej pikseli w celu. Jeden lub dwa piksele mogą wystarczyć, aby jakościowego ustalenia , że istnieje różnica temperatur, ale mogą nie wystarczyć do zapewnienia dokładnego odwzorowania średniej temperatury danego obszaru.  

 

STOSUNEK ODLEGŁOŚCI DO WIELKOŚCI PLAMKI POMIAROWEJ 3

W idealnej sytuacji odwzorowywany cel powinien pokrywać co najmniej jeden piksel.W celu zapewnienia dokładniejszych odczytów należy pokryć większy obszar, aby uwzględnić dyspersję optyczną rzutowania. 

 

 

Pomiar jednopikselowy może być niedokładny z różnych powodów:

  • Kamery termowizyjne mogą mieć złe piksele.
  • Obiekty odbijają światło – zadrapanie lub odbicie światła słonecznego mogłoby spowodować wynik fałszywie pozytywny oraz fałszywie wysoki odczyt.
  • Obiekt gorący – na przykład łeb śruby – może być niemalże tej samej szerokości, co piksel, ale piksel jest kwadratowy, a łeb śruby sześciokątny.
  • Żaden układ optyczny nie jest doskonały – zawsze występują jakieś zniekształcenia, które wpływają na pomiary. 

 

Ze względu na zjawisko zwane dyspersją optyczną promieniowanie z bardzo małej powierzchni nie zapewni jednemu elementowi detektora wystarczająco dużo energii, aby umożliwić uzyskanie poprawnej wartości. Należy upewnić się, że gorący obszar odczytu wartości punktowej ma co najmniej 3 × 3 piksele. Wystarczy pomnożyć teoretyczny stosunek odległości do wielkości plamki pomiarowej w milimetrach przez trzy, co pozwoli uzyskać stosunek plamki pomiarowej 3 × 3 piksele zamiast 1 × 1. Taka wartość będzie dokładniejsza.  

 

Po pomnożeniu IFOV w mm (19,62) przez 3 uzyskujemy 58,86 mm.

 

Oznacza to, że można zmierzyć obiekt o średnicy 58,86 milimetra z odległości 15 metrów. 

 

A teraz załóżmy, że chcemy zmierzyć obiekt o średnicy 20 milimetrów. Z jakiej maksymalnej odległości można dokładnie zmierzyć powierzchnię tej wielkości? Trzeba zastosować mnożenie krzyżowe: 

IFOV w mm: Odległość w mm

(15 m = 15 000 mm)

58,86:15 000

20 mm : x

15000*20 = 58,86*x

300 000/58,86 = x

x = 5096,8 mm, czyli około 5,1 m

 

Kamerą o rozdzielczości 320 × 240 pikseli można zmierzyć obiekt o średnicy 20 mm z odległości około 5 m od celu.

 

STOSUNEK ODLEGŁOŚCI DO WIELKOŚCI PLAMKI POMIAROWEJ 4

Ilustracja pola widzenia przy 2,6 mrad i 1,36 mrad. Udostępniona przez Infrared Training Center.

 

 

Inni producenci mogą nie używać tej wartości, gdy omawiają IFOV lub SSR, ale w praktyce zapewnia ona dokładniejszy odczyt temperatury anomalii. 

 

Stosunek odległości do średnicy plamki pomiarowej jest ważny, ponieważ pomaga zrozumieć, czy kamera termowizyjna jest w stanie dokładnie mierzyć temperaturę z wymaganej odległości. Jeśli chcesz mierzyć małe cele z dużej odległości, znajomość stosunku odległości do wielkości plamki pomiarowej czyli odległości dokładnego pomiaru ma kluczowe znaczenie. 

 

Jeśli planujesz badanie termograficzne, zastanów się, czy możesz podejść wystarczająco blisko celu, aby uzyskać dokładny odczyt. Dokładny znaczy tyle, co wystarczająco dobry dla prawidłowej interpretacji. Niekoniecznie nawet musi to oznaczać „w zakresie dokładności kamery”. Jeśli nie uwzględnisz stosunku odległości do średnicy plamki pomiarowej, możesz uzyskać odczyt odchylony o kilkadziesiąt, a nawet kilkaset stopni.

 

 

SUPER NAGRODY FLIR!


Zakup produkty FLIR za minimum 1000 euro i otrzymaj wybraną nagrodę!

  

FLIR iBros Super okazje

 

Zakres cen w Euro

WYBIERZ JEDNĄ Z NAGRÓD SPECJALNYCH

 

 

Poziom I

 

1000 – 2999

poziom1 promocja FLIR

 

 

Poziom II

 

3000 – 6999

 

poziom2 promocja FLIR

 

 

Poziom III

 

7000 – 11999

 

poziom3 promocja FLIR

 

 

Poziom IV

 

12000 – 19999

 

poziom4 promocja FLIR

 

 

Poziom V

 

20000 lub więcej

 

poziom5 promocja FLIR

 

 

FLIR iBros Super okazje

O szczegóły promocji zapytaj autoryzowanego bezpośredniego dystrybutora FLIR Systems w Polsce:

iBros technic  tel: +48 12 3767051 oraz +48 22 2035086   email: Ten adres pocztowy jest chroniony przed spamowaniem. Aby go zobaczyć, konieczne jest włączenie w przeglądarce obsługi JavaScript.   www.termowizja.ibros.pl     www.iBros.pl  

 

FLIR iBros Super okazje

Promocja ograniczona czasowo do 31 grudnia 2021r.

FLIR Rewards 

 

Zestawy do zastosowań elektrycznych

 

 

 

 

 

FLIR E5-XT z miernikiem cęgowym CM72

 

FLIR E6-XT z miernikiem cęgowym CM74

 

FLIR E8-XT z miernikiem cęgowym CM74

 

Dzięki kamerze termowizyjnej możemy stwierdzić, że udało nam się odtworzyć coś co na przestrzeni milionów lat stworzyła natura. Może dziwić porównanie urządzenia technologicznego do natury jednak wytłumaczenie jest proste, lecz aby to zrozumieć musimy przyjrzeć się zasadzie działania kamery termowizyjnej oraz oka.



Światło (promieniowanie widzialne) jest to ta część widma elektromagnetycznego, która powoduje bezpośrednio wrażenia wzrokowe u człowieka. Światło odbite od przedmiotów przechodzi przez układ optyczny tworząc na siatkówce obraz, który jest pomniejszony i odwrócony. Następniepoprzez nerw wzrokowy i dalsze składniki drogi wzrokowej do mózgu przekazywane są impulsy nerwowe. W widmie światła widzialnego istnieją przedziały o różnych długościach fal, któreoko ludzkie odbiera jakowrażenie różnych barw.

 

 

FLIR iBros Budowa ludzkiego oka

Rys. 1 Budowa ludzkiego oka

Oko ludzkie umożliwia nam zdobywanie bardzo dużej ilości informacji o otoczeniu, o odległościach, kształtach, ruchach oraz barwach, dzięki czemu możemy bezpiecznie poruszać się w przestrzeni oraz analizować obserwowaną sytuację.

FLIR iBros Podczerwień

Rys.2 Zakres fali widzialnych

 

Jednak nie wszystkie organizmy widzą tak samo, natura dostosowała sposób widzenia do potrzeb poszczególnych organizmów. Węże posiadają możliwość widzenia fal podczerwonych, za pomocą jamek termicznych, dzięki którym wąż wykrywa nawet minimalne zmiany temperatury.
Zmiany te wywołane są przez stałocieplne zwierzęta (myszy, ptaki), a także te zmiennocieplne (jaszczurki, żaby) ponieważ temperatura ich ciała jest nieco wyższa od temperatury otoczenia. Jamki skierowane są tak, aby wąż mógł określić odległość jak i wielkość swojej ofiary nawet w warunkach ograniczonej widoczności lub ciemną nocą. Organy te wykrywają różnice rzędu 0.001°C.

FLIR iBros zdjęcie termowizyjne ptaka


Rys. 3 Różnice ciepła na ciele ptaka

Teraz już możemy zrozumieć zasadę działania kamery termowizyjnej, która naśladuje i łączy pracę oka i jamek termicznych węży. Promieniowanie cieplne emitowane jest przez istoty żywe, zbiorowisko kropel cieczy, powierzchnię ciała stałego w obserwowanej przestrzeni czyli przez każdy obiekt, którego temperatura przekracza zero absolutne(-273, 15°C).

To promieniowanie przechodzi przez soczewkę i skupia się na detektorze. Współczesne detektory budowane są jako matryce pojedynczych detektorów, zwanych pikselami. Każdy z poszczególnych detektorów przetwarza padające na niego promieniowanie na sygnał elektryczny, który zmienia się zależnie od intensywności promieniowania podczerwonego. Sygnał ten jest przekształcany do postaci cyfrowej i wtedy już widzimy go na wyświetlaczu kamery (zdjęcie termowizyjne, termogram).

Kamera termowizyjna może być wykorzystana przez człowieka do różnych celów. Dzięki niej możemy zidentyfikować wady izolacji termicznej budynków,
uzyskać wiele informacji na temat wykonania prac budowlanych i jakości użytych materiałów oraz strat ciepła w naszych domach. Pozwala na łatwą lokalizacja rur
z ciepłą wodą oraz wycieków i nieszczelności, miejsc pęknięć sieci grzewczej i wodociągowej. Kamera termowizyjna czyni nas tak przebiegłym i skutecznym w oszczędzaniuenergii cieplnej jak przebiegły i sprytny potrafi być wąż w złapaniu i pochłanianiu „ciepła” ;)

FLIR iBros mostki termiczne budynku

Rys.4 Różne temperatury na elewacji budynku pozwalają na wykrycie wad.

Patrycja Surówka

Źródła:
Rys.1 pobrane z kck.wikidot.com
Rys2.-Rys.4 własne materiały

 

FLIR ELARA FR-345-EST

INTELIGENTNA STACJONARNA KAMERA TERMOWIZYJNA DO BADAŃ PRZESIEWOWYCH PODWYŻSZONEJ TEMPERATURY CIAŁA

 

FLIR EST to nowa seria kamer termowizyjnych zaprojektowanych specjalnie do stosowania w pomiarach podwyższonej temperatury skóry.

 

 

 

FLIR Elara FR-345-EST to ekonomiczna, stacjonarna kamera radiometryczna do dokładnego pomiaru temperatury skóry* w wejściowych punktach kontrolnych o średnim i dużym natężeniu ruchu. Kamera jest wyposażona w funkcję inteligentnego wykrywania konturów twarzy. Model Elara FR-345-EST wyświetla na ekranie komunikaty dla osób, które muszą zdjąć okulary, jednocześnie kierując je do właściwej pozycji, aby uzyskać najlepsze wyniki pomiaru. Kamera wykonuje pomiar w sposób bezkontaktowy, automatycznie lokalizuje i mierzy temperaturę w wewnętrznym kąciku oka w ciągu jednej sekundy oraz natychmiast wskazuje wynik pomiaru. Integracja z systemami VMS dodatkowo usprawnia przepływ pracy i podejmowanie decyzji w obiektach, pomagając jednocześnie personelowi ochrony zachować bezpieczny dystans od potencjalnych zagrożeń dla zdrowia. Elara FR-345-EST nie wymaga ani nie zapisuje danych osobowych (PII) do badań przesiewowych temperatury skóry.

 

ZASTRZEŻENIE: Urządzenia FLIR są przeznaczone do stosowania jako uzupełnienie procedur klinicznych w badaniach temperatury powierzchni skóry. Różne czynniki środowiskowe i metodologiczne mogą wpływać na obrazowanie termiczne, dlatego nie należy na nim polegać jako jedynym wyznaczniku temperatury ciała danej osoby. Do zidentyfikowania podwyższonej temperatury ciała konieczne będzie użycie urządzenia medycznego.

 

 pdf

 

  >> Karta techniczna FLIR ELARA FR-345-EST

 

 elara aplikacje

 

SZYBKIE, ZAUTOMATYZOWANE I DOKŁADNE PRZESIEWOWE BADANIA TEMPERATURY SKÓRY
Precyzyjna radiometryczna kamera termowizyjna automatycznie lokalizuje i mierzy temperaturę wewnętrznego kącika oka

  • Bezkontaktowy pomiar temperatury z dokładnością do ± 0,5 ° C (± 0,9 ° F)
  • Krótki czas badania przesiewowego wynoszący jedną sekundę po prawidłowym ustawieniu osoby, zapewniający wysoką wydajność
  • Automatyczny pomiar kąta w aparacie z wizualnym potwierdzeniem wyniku pozytywnego/negatywnego
  • Interaktywny wyświetlacz ułatwiający ustawienie użytkownika we właściwej odległości i pozycji głowy w celu wykonania dokładnego pomiaru

INTEGRACJA Z VMS I KONTROLĄ DOSTĘPU
Bezproblemowa obsługa dzięki platformom VMS upraszcza instalację, przyspiesza pracę i podejmowanie decyzji

  • W pełni zintegrowana konfiguracja i obsługa dostępna z FLIR United VMS
  • Kompatybilna z VMS innych firm
  • Obsługa cyfrowych wejść / wyjść dla integracji kontroli dostępu
  • Tryby portretowe i poziome zapewniają elastyczność instalacji

INTELIGENCJA KONTURÓW
Algorytmy zastosowane w kamerze zapewniają szybkie, wiarygodne i praktyczne wyniki badań przesiewowych

  • Adaptacyjny próg alarmowy pomaga zminimalizować fałszywe alarmy
  • Automatyczna kalibracja i samo-ekranowanie zapewniają natychmiastową informację zwrotną o wyniku pomiaru
  • Automatyczne wykrywanie twarzy, maski i okularów

 

 

DANE TECHNICZNE:

Thermal Sensor & Optics

Array Format (NTSC)

320 × 256

Detector Type

Long-Life, Uncooled VOx Microbolometer

Pixel Pitch

17 µm

Thermal Frame Rate

20 Hz

FOV

45° × 34°

F/#

1.05.2020

Spectral Range

7.5 μm to 13.5 μm

Accuracy [Drift] in Screening Mode

±0.5°C (±0.9°F)

Object Temperature Range

15°C to 45°C (59°F to 113°F); camera provides contrast from -20°C to 120°C (-4°F to 248°F) but will not provide temperature information

Screening Mode Subject Distance

1m ± 0.2m

Visible Light Camera

Sensor Type

1920 × 1080

Lens FOV

HFOV = 75°

VFOV = 44°

Focal Length

4 mm

F/#

1.6

Sensitivity

0.05 Lux (@ f1.6 AGC ON, 30FPS)

Video

Video Compression

Two independent channels of H.264 or M-JPEG for visible

One channel of H.264 or M-JPEG for thermal

Streaming Resolution

Thermal: upscaled to VGA (640 × 480)

Visible: 1080p (1920 × 1080), 720p (1280 × 720), VGA (640 × 480)

System Integration

Ethernet

10/100 Mbps

Network APIs

FLIR SDK

FLIR CGI

ONVIF Profile S

Digital I/O

Input: one dry alarm contact

Output: one photo relay contact 1A max at 24 VAC/30 VDC

Network

Supported Protocols

IPV4, HTTP, HTTPS, UPnP, DNS, NTP, RTSP, RTP, TCP, UDP, ICMP, IGMP, DHCP, ARP, IEEE 802.1X

General

Input Voltage

12-30 VDC (±10%)

24 VAC (21-28 VAC)

802.3at (PoE+)

Power Consumption

17 W

Environmental

IP Rating (Dust & Water Ingress)

IP54

Operating Temperature Range

15°C to 45°C

Storage Temperature Range

-40°C to 70°C

Humidity

0-95% relative

Vandalism

IK10

Compliance & Certifications

FCC Part 15 (Subpart B, class A)

CE Marked

RoHS

WEEE

ONVIF Profile S

Video Analytics

Canthus detection and temperature measurement

Face detection

Mask detection

Glasses detection

Subject pose and distance detection

Cyber Security

IEEE 802.1x

TLS Authentication - control & streaming

Digest authentication

HTTPS encryption

Encrypted FW upload

Access control via firewall

Specyfikacje mogą ulec zmianie bez powiadomienia.

Najbardziej aktualne specyfikacje można znaleźć na stronie www.flir.com

 

* WYŁĄCZENIE Z ODPOWIEDZIALNOŚCI: Zakażenia, takie jak COVID-19, SARS i inne choroby, mogą powodować objawy, takie jak podwyższona temperatura skóry - możliwy objaw infekcji. Chociaż ta kamera FLIR nie jest w stanie wykryć ani zdiagnozować wirusów, stanowi ona prosty, wstępny środek łagodzenia efektu dalszego rozprzestrzeniania się zakażeń, zapewniając pewność powrotu do normalności. Urządzenia FLIR są przeznaczone do stosowania jako uzupełnienie procedur klinicznych w badaniach przesiewowych temperatury powierzchni skóry. Różne czynniki środowiskowe i metodologiczne mogą wpływać na obrazowanie termiczne; dlatego nie należy traktować go jako jedynego wyznacznika temperatury ciała człowieka. Do rozpoznania podwyższonej temperatury ciała konieczne będzie użycie urządzenia medycznego.

 

Właściwości

Nowa seria BX o rozszerzonych parametrach.

FLIR T620 & T640 (bx) - 307 200 pikseli
Rozdzielczość - 640 x 480

Wyjatkowa gwarancja FLIR Systems: 2-5-10

Główne zalety serii T 6xx:

  • UltraMax – jeszce wieksza rozdzielczość na zdjęciach termowizyjnych - teraz kamera termowizyjna FLIR pozwala na wykonywanie zdjęć termowizyjnych z 4x wiekszą rozdzielczością
  • MSX – zaawansowana technologia FLIR pozwala połączyc obraz podczerwony z obrazem widzianym, zaowocowało to w uzyskaniu niesamowitej jakości oraz szczegółowości obrazu
  • Komunikacja bezprzewodowa – wbudowany modół Wi-Fi pozwala na komunikację z urzadzeniami mobilnymi takimi jak telefony komórkowe, laptopy. Dzięki darmowym aplikacjom mozna przesyłac dane do urządzeń mobilnych, zdalnie sterować kamerą, ogladac obraz z kamery w czasie rzeczywistym
  • Notatki na ekranie – dotykowy ekran pozwala na nanoszenie notatek za pomocą rysika, nie ma potrzeby czekać, aż zdjęcie zostanie przeslane do komputera. Jesli znajdziesz jakiś punkt na ktory trzeba zwrócic szczególna uwage - zaznacz go!
  • Notatki głosowe – masz watpliwości, chcesz cos podkreślić, masz zajete ręce - nagraj notatke głosowa i dołącz ja do zdjecia.
  • Obrotowy obiektyw - pozwala na pochylenie obiektywu w zakresie 120º, umozliwia wykonywanie zdjęć w trudno dostępnych miejscach.
  • Fuzja termiczna oraz obraz w obrazie - pozwala na umieszczenie dowolnie skalowalnego obrazu termicznego w obrazie widzialnym
  • Wbudowany GPS - dodaj do obrazu współrzędne geograficzne
  • Nastawa ostrości - ręczna i automatyczna nastawa ostrości
  • Wbudowany kompas - podaje kierunek w jakim wykonywane jest obrazowanie termiczne

Specyfikacje

Specyfikacja techniczna Kamery termowizyjnej T620 oraz T640 (bx):

  FLIR T620 FLIR T640
Dokładność ±2% lub 2°C ±2% lub 2°C
Rozdzielczość detektora 307 200 (640 x 480) 307 200 (640 x 480)
Czułość termiczna <0.04°C <0.035°C
Zakres pomiaru temperatury -40°C do 650°C (-40°F to 1,202°F) opcjonalnie do 2 000°C (3,632°F) -40°C do 2,000°C (-40°F to 3,632°F)
Wielkość wyświetlacza 4.3”/Panoramiczny 4.3”/Panoramiczny
Wizjer Nie Tak
Tryby pomiarowe 5 trybów: 5 punktów, 5 powierzchni, Izoterma, Auto punkt ciepły/zimny; Delta T 5 trybów: 5 punktów, 5 powierzchni, Izoterma, Auto punkt ciepły/zimny; Delta T
Punkty pomiarowe 10 przesuwalnych 10 przesuwalnych
Częstotliwość odświeżania 30 Hz 30 Hz
FOV 25° × 19° 25° × 19°
FOV taki jak w obiektywie Tak Tak
Opcjonalne obiektywy 6: 7° & 15° Tele, 45° & 80° Szer.; Makro: 100 um, 50 um, 25 um 6: 7° & 15° Tele, 45° & 80° Szer.; Makro: 100 um, 50 um, 25 um
Ustawienie ostrości Manualne & Automatyczne Manualne & Automatyczne
Ciągły auto-fokus Nie Tak
Minimalna odległość ostrzenia 0.25 m (9.8 in.) 0.25 m (9.8 in.)
Zdjęcie radiometryczne JPEG zapisane na kartę SD Tak Tak
Film MPEG4 zapisany na kartę SD (nie radiometryczny) Tak Tak
Palety 12: Arktyczna, Szara, Żelazo, Lawa, Tęcza, Tęcza HC (oraz wszystkie palety z odwróconymi kolorami) 12: Arktyczna, Szara, Żelazo, Lawa, Tęcza, Tęcza HC (oraz wszystkie palety z odwróconymi kolorami)
Oprogramowanie FLIR Tools Tak Tak
Raport w kamerze Tak Tak
Czas pracy na baterii >2.5 godzin >2.5 godzin
Kamera wbudowana 5MP 5MP
Wbudowane podświetlenie LED Tak Tak
Ekran dotykowy Tak Tak
Zoom cyfrowy
Alarm izolacji Nie Nie
Alarm punktu rosy Nie Nie
Połączenie MeterLink® Tak Tak
Wskaźnik laserowy Tak Tak
Indykator wskaźnika na obrazie IR Tak Tak
Kompas Tak Tak
GPS Tak Tak
Korekcja dla okna wziernikowego IR Window Tak Tak
Delta T Tak Tak
Obraz w obrazie Dostosowanie PIP Dostosowanie PIP
Fuzja termiczna Tak Tak
MSX™ Obrazowanie multispektralne Tak Tak
Szkic na ekranie Tak Tak
Szkic na zdjęciu IR Nie Tak
Notatki tekstowe/głosowe Tak Tak
Oprogramowanie FLIR Tools Mobile na Apple® & Android™ Tak Tak
Streaming video Tak Tak
Zdalne sterowanie FLIR App Remote Control Tak Tak
Odporność na upadek (2 metry/6.6 stóp) Nie Nie
Waga (włącznie z bateriami) 1.3 kg (2.87 lbs) 1.3 kg (2.87 lbs)

 

Zastosowanie kamer T 6xx:

  • Wykonywanie pomiarów testowych instalacji 
  • Wyszukiwanie problemów z urządzeniami wentylacji, klimatyzacji
  • Znajdowanie usterek związanych z instalacjami sanitarnymi
  • Audyty energetyczne budynków

Zalety kamer termowizynych z serii T 6xx:

  • instrukcja obsługi w języku polskim
  • podświetlane przyciski
  • niska waga 1,3 kg
  • dotykowy monitor
  • 10 lat gwarancji na detektor
  • 2 lata gwarancji na kamerę
  • 2,5 godzin pracy na zasilaniu bateryjnym
  • certyfikat kalibracji w cenie zestawu

Zrzuty ekranów

Przykładowe zrzuty ekranów

 

breaker-panel-infrared breaker-panel-infrared
discharge-pipe discharge-pipe
single-phase-transformer single-phase-transformer
motor-bearing-infrared motor-bearing-infrared

MSX

 

flir-t640-motors flir-t640-motors
flir-t640-msx-motors flir-t640-msx-motors
flir-t640-panel flir-t640-panel
flir-t640-msx-panel flir-t640-msx-panel
flir-t640-recessed-lights flir-t640-recessed-lights
flir-t640-msx-recessed-lights flir-t640-msx-recessed-lights

Zdjęcia aplikacji

Przykładowe zdjęcia aplikacji kamery termowizyjnej T640:

air-infiltration air-infiltration
missing-insulation missing-insulation
pump-motor pump-motor
radiant-heat radiant-heat
wet-insulation-infrared wet-insulation-infrared
tank-levels-infrared tank-levels-infrared

 

Kontakt dystrybutor FLIR w Polsce

©iBros. Wszelkie prawa zastrzeżone.