A+ A A-

Zestaw wideoskopu termowizyjnego MSX 

FLIR VS290-32

 

FLIR VS290-32 to przemysłowy wideoskop termowizyjny i wizualny zaprojektowany, aby pomóc profesjonalistom w szybkim i bezpiecznym znajdowaniu ukrytych zagrożeń w trudno dostępnych miejscach, zwłaszcza podziemnych rozdzielnicach elektrycznych. Wyposażony w kamerę termowizyjną o rozdzielczości 160×120 i FLIR MSX® (Multi-Spectral Dynamic Imaging), VS290-32 umożliwia użytkownikom uchwycenie gorących punktów przed wystąpieniem awarii, aby utrzymać czas pracy i zapobiegać przestojom. Sonda z kamerą o długości 2 m umożliwia łatwą inspekcję przez małe otwory – poprawiając wydajność i skracając czas diagnostyki. Ponadto klasa bezpieczeństwa CAT IV 600 V sprawia, że VS290-32 jest wytrzymałym i wszechstronnym narzędziem do najbardziej wymagających środowisk w zastosowaniach użyteczności publicznej, produkcji i konserwacji budynków.

 

 >> Pobierz kartę techniczną FLIR VS290-32

 

Cechy i zalety

Bezpiecznie sprawdzaj niedostępne obszary
Szybko lokalizuj ukryte usterki za pomocą kamery termowizyjnej 160 × 120 z MSX i kamerą wizyjną 2 MP, nawet w trudno dostępnych miejscach.

 

Identyfikuj, dokumentuj, udostępniaj
Popraw przepływ pracy i komunikuj potencjalne problemy, zanim staną się poważnymi problemami, korzystając z FLIR Thermal Studio.

 

Wszechstronny, wytrzymały i niezawodny
CAT IV 600 V i oferuje wysoki poziom ochrony przed pyłem i wodą w najbardziej wymagających środowiskach.

 

 FLIRvs290 32

 

 

 

Specyfikacja

Specyfikacja techniczna FLIR VS290-32:

vs290 32 specification

Dane techniczne mogą ulec zmianie bez powiadomienia. 

Najnowsze dane techniczne są dostępne na stronie www.flir.com

 

 

Wideo

Zestaw wideoskopu termowizyjnego FLIR VS290-32

 

 

 

 

 

 

 

 


1. Kup kamerę termowizyjną z najlepszą rozdzielczością detektora i jakością obrazu na jaką pozwala twój budżet

Kamery termowizyjne o większej rozdzielczości mogą mierzyć mniejsze obiekty z większych odległości i tworzyć ostrzejsze obrazy w podczerwieni, co razem składa się na bardziej precyzyjne i wiarygodne pomiary.
Musisz też pamiętać o różnicy między rozdzielczością detektora i wyświetlacza. To rozdzielczość detektora ma decydujące znaczenie, od niego zależą jakość obrazu w podczerwieni i dane z pomiarów.
Wyższa jakość zobrazowania w podczerwieni nie tylko zapewnia wyższą dokładność wyników, ale także ułatwia przedstawienie obrazów klientom, szefom, serwisantom czy firmom ubezpieczeniowym, co może przyśpieszyć podejmowanie decyzji o przeprowadzeniu napraw oraz ułatwić reklamację usług. Lepsza jakość zobrazowania w podczerwieni pozwala także na tworzenie bardziej przejrzystych raportów.

7 FLIR IBROS porownanie zdjec kamer termiowizyjnych 5 
Rys.1 Rozdzielczości poszczególnych kamer termowizyjnych 

2. Trzeba zaprezentować wyniki innym? Znajdź system z wbudowaną kamerą światła widzialnego wyposażoną w lampę oświetlającą i wskaźnik laserowy.

Nie ma sensu noszenia dodatkowego sprzętu do robienia zdjęć, podczas gdy dostępne na rynku, niedrogie kamery termowizyjne zawierają wbudowany 3 do 5-megapikselowy aparat cyfrowy. Dzięki temu możliwe jest jednoczesne rejestrowanie obrazów światła widzialnego i obrazy=ów termicznych. Cyfrowe fotografie odpowiadające obrazom w podczerwieni, przedstawiające rejestrowane przez Ciebie elementy pomogą Ci później udokumentować ustalenia i zaprezentować je osobom decyzyjnym, podając precyzyjne położenie zarejestrowanych miejsc. Poza tym upewnij się, czy kamera posiada lampę oświetlającą, działającą także jako flesz podświetlający ciemne miejsca.

Nieocenioną pomocą może okazać się wskaźnik laserowy, zwłaszcza gdy chcesz wskazać obiekt otoczony przez inne, podobne, takie jak bezpieczniki, lub podzespoły energetyczne , od których najlepiej jest zachować bezpieczną odległość.

FLIR IBROS wbudowana lampa oświetlająca w kamerze termowizyjnej
Rys.2 Wbudowana lampa oświetla ciemne miejsca zapewniając bezpieczeństwo i lepszą jakość obrazów widzialnych

FLIR IBROS wbudowany laser w kamerze termowizyjnej
Rys.3 Wskaźnik laserowy zaznacza obiekt na obrazach w świetle widzialnym służących do porównań

3. Wybierz kamerę, która zapewnia dokładne i powtarzalne wyniki

Kamery termowizyjne nie tylko umożliwiają oglądanie różnic ciepła, ale mogą także je mierzyć. To znaczy, że w ocenie przydatności kamery termowizyjnej duże znaczenie ma zarówno dokładność, jak i spójność tych pomiarów.

Wszystkie kamery FLIR spełniają minimalne kryterium dotyczące dokładności +/-2%(2), dzięki temu że firma sama wytwarza detektory podczerwieni. Jednak nie jest to jedyny warunek. W celu uzyskania poprawnych i powtarzalnych wyników twoja kamera powinna posiadać wbudowane narzędzia umożliwiające wprowadzenie zarówno wartości „emisyjności” jak i „temperatury odbitej”.

Innymi ,przydatnymi funkcjami analitycznymi są liczne ruchome punkty pomiarowe i obszary pomiarowe, umożliwiające wybranie miejsc gdzie mierzona będzie temperatura, odczytanie jej, zarejestrowanie w postaci danych radiometrycznych i wprowadzenie tych wartości do raportu.
FLIR IBROS dokładne dane na fotogramie 1
Rys.4 Możliwość wprowadzania i skorygowania wartości różnych parametrów np ."emisyjność"

4. Kup kamerę termowizyjną, która zapisuje i wyświetla pliki w standardowych formatach.

Wiele kamer termowizyjnych zapisuje obrazy w formacie, który może być odczytywany i analizowany wyłącznie za pomocą specjalistycznego oprogramowania.

FLIR odróżnia się tym, że zapisuje pliki w powszechnie używanym i znanym formacie JPEG z wbudowaną możliwością pełnej analizy temperatury. Pozwala to na wysyłanie e-mailem obrazów termowizyjnych do klientów lub współpracowników. Radiometryczne zdjęcia w formacie JPEG mogą być również importowane z kamer termowizyjnych obsługujących Wi-Fi na mobilne urządzenia umożliwiające ich edycję, analizę i wymianę. Sprawdź czy z modelu, którego zakup rozważasz, można uzyskać pliki JPEG bez skomplikowanych, dodatkowych czynności.

Szukaj także kamery termowizyjnej, umożliwiającej strumieniową transmisję MPEG-4 przez USB do komputerów i monitorów. Jest to szczególnie użyteczne do wychwytywania zjawisk dynamicznych, gdzie ogrzewanie i chłodzenie, zachodzi bardzo gwałtownie. Niektóre kamery posiadają wyjścia zespolonego sygnału wideo umożliwiające podłączenie ich kablem do rejestratorów cyfrowych, zaś inne mają wyjścia HDMI. Istnieją również mobilne aplikacje umożliwiające strumieniową transmisję wideo przez WiFi. Wszystkie te czynności ułatwiają Ci prezentowanie innym osobom swoich ustaleń i pomagają w pracy przy wykonywaniu przeglądów w podczerwieni i przy opracowaniu raportów.
FLIR IBROS zdjęcia w formacie JPG
Rys.5 Zdjęcia powstałe dzięki kamerze termowizyjnej gotowe są do obróbki 

5. Rozważ zakup kamery termowizyjnej współpracującej przez Bluetooth z miernikami T&M umożliwiającymi określenie obciążenia elektrycznego i poziomu wilgotności.

Nowe urządzenia pomiarowe i testowe, takie jak mierniki FLIR MaterLink umożliwiają kamerom termowizyjnym pomiary innych parametrów, niż tylko temperatura, w celu oceny stopnia zawilgocenia i uszkodzeń elektrycznych. Mierniki wilgotności i mierniki cęgowe tego typu bezprzewodowo transmitują ważne dane diagnostyczne, takie jak wilgotność, natężenie i napięcie prądu oraz rezystancje bezpośrednio do kamery. Adnotacje ze wskazań mierników są automatycznie naniesione na obraz termiczny i osadzone w radiometrycznym pliku JPEG, by wesprzeć wyniki z kamery termowizyjnej i wspomóc diagnozę.
FLIR IBROS połączenie przez Bluetootch z innymi urządzeniami
Rys.6 Mierniki umożliwiają kamerom termowizyjnym pomiar innych parametrów, niż tylko temperatura.

6. Aplikacje dla urządzeń mobilnych, dzięki łączności Wi-Fi usprawniają udostępnianie i przekazywanie innym obrazów w podczerwieni i danych. Należy wybrać kamerę kompatybilną z tą wiodącą technologią.

Obecnie można bezprzewodowo podłączyć kamery FLIR serii E i T do urządzeń mobilnych pracujących w środowisku iOS, Android, Kindle. Unikalna aplikacja FLIR Tools, pozwala użytkownikom zaimportować obrazy termowizyjne do przenośnego urządzenia celem bieżącej analizy, generowania raportów i udostępniania. Możliwość wysłania obrazów termicznych i raportów z badań, z jednej części obiektu do drugiej przez WiFi lub pocztą elektroniczną z odległego miejsca pracy, to ogromna zaleta, zwłaszcza, gdy zależy nam na czasie.


FLIR IBROS połączenie przez Bluetootch z różnymi aplikacjami
Rys.7 Bezprzewodowe podłączenie kamery FLIR do urządzeń nowej generacji

7. Upewnij się, że kupujesz kamerę dopasowaną pod względem ergonomii, która uczyni Twoją pracę jak najwygodniejszą i dopasuje się do Twoich przyzwyczajeń.

Masa kamery nabiera tym większego znaczenia im częściej i dłużej jej używasz. Masz do dyspozycji duży wybór kompaktowych, lekkich kamer o prostej konstrukcji, w bardzo przystępnych cenach. FLIR serii T mają obiektywy, które można odchylić o 120 stopni – możliwość odchylenia bloku optycznego, by zajrzeć w trudno dostępne miejsca . Jest to idealne rozwiązanie w sytuacji całodziennego przeglądu wysoko położonych ciągów przewodów, zaglądania za silniki, pod stacje robocze i ustawiania kamery pod najróżniejszymi kątami.

Kolejne aspekty, które powinniśmy sprawdzić, to czy kamera jest wyposażona w: dedykowane klawisze bezpośredniego dostępu do funkcji menu. Ułatwia to poruszanie się w opcjach menu. Dobrym rozwiązaniem może okazać się zakup kamery termowizyjnej z dotykowym ekranem.

FLIR IBROS ergonomia w wykonaniu kamery
Rys.8 Ergonomiczna kamera termowizyjna FLIR

8. Obraz w obrazie (Picture – in – Picture) oraz fuzja obrazów - funkcje, które umożliwiają Ci połączenie obrazów w podczerwieni i w świetle widzialnym do łatwego odczytu raportów z przeglądów.

Obraz w obrazie P-i-P umożliwia wstawianie wkładki z obrazem w podczerwieni w związany z nim obraz zarejestrowany w świetle widzialnym. Pozwala to na dokładną lokalizację problemu oraz wskazanie jej klientom, współpracownikom i ekipom remontowym.

Zaawansowane technicznie kamery termowizyjne wyposażone są również w funkcję „fuzji obrazów” tzw. thermalfusion, która pozwala mieszać obrazy termowizyjne i światła widzialnego w jednym zdjęciu. Możesz precyzyjnie ustalić na ile obraz widzialny ma prześwitywać spod obrazu termicznego. To pomoże Ci uwypuklić anomalię w jakimś obiekcie, na przykład oznaczyć wyciek z instalacji. Dzięki tej funkcji dostajemy obrazy, które przydatne są do dokumentowania stanu obiektu, jak i przesłanek do naprawy czy remontu obiektu.

Funkcja MSX to nowa funkcja umożliwiająca uzyskanie niezwykle bogatych w detale termogramów. Funkcja zapewnia lepsze tekstury w obrazie termicznym dzięki czemu można przeprowadzić szczegółowe analizy obrazów wykonanych w podczerwieni, jak i w szybkim tempie wyciągnąć wnioski. Zalety:

- ostrzejszy obraz termiczny - uwidocznienie wszystkich istotnych elementów badanego obiektu, łącznie z możliwością odczytania: kształtu, zarysu obiektu, odczytania treści na tabliczkach znamionowych.

- szybsza lokalizacja kształtu a tym samym szybsza droga do rozwiązania problemu.

- duże ułatwienie przy wykonywaniu raportów.

Funkcja UltraMax, umożliwia czterokrotne zwiększenie rozdzielczości obrazu termograficznego w raporcie. To kolejne ułatwienie w analizie małych elementów ulokowanych w trudno dostępnych i niebezpiecznych miejscach.
FLIR IBROS funkcja MSX obrazu
Rys.9 Obraz z wyłączoną funkcją MSX i z włączoną funkcją MSX

9. Nie wszystkie programy do przygotowywania raportów są sobie równe: pamiętaj o testowaniu produktu przed zakupem. Sprawdź i bądź pewny, czy program odpowiada Twoim wymaganiom.

Przygotowywanie raportów jest niezbędnym elementem działań termowizyjnych. Klienci, od indywidualnych właścicieli domów, po wielkie korporacje wymagają udokumentowania ustaleń z przeglądu. Obrazy w podczerwieni i raporty z przeglądu stanowią kluczowy element wielu zastosowań: audyty energetyczne, przeglądy elektryczne, badania wykrywające wycieki, analizy przegród zewnętrznych budynku i programy konserwacji zapobiegawczej. Są one często używane jako podstawa do roszczeń odszkodowawczych czy uzasadnień prac remontowych. Podstawowe oprogramowanie jest dostarczane z każdą kamerą termowizyjną FLIR, jednak dostępne są też zaawansowane programy umożliwiające bardziej dokładną analizę i tworzenie rozbudowanych raportów. Oprogramowanie pozwala na wykonanie wielu zadań od pomiarów punktowych, po zaawansowane kalibracje radiometryczne. Analiza danych jest możliwa z wykorzystaniem wyspecjalizowanego oprogramowania innych producentów MatLab™ lub Excel. 
FLIR IBROS oprogramowanie FLIR Tools
Rys.10 Obróbka zdjęć dzięki oprogramowaniu FLIR Tools

10. Wybierz kamerę termowizyjną z szerokim zakresem mierzonych temperatur.

Zakres temperatury i czułość termiczna kamery są bardzo istotne. Zakres pokazuje minimalną i maksymalną temperaturę, którą kamera może mierzyć (np. -40 + 2000).
Czułość termiczna kamery pokazuje najmniejszą różnicę temperatur pomiędzy dwoma obiektami, którą kamera może dostrzec (na przykład 0,050 C). Należy wybrać kamerę termowizyjną z zakresem temperatur na tyle szerokim, by pokrywał temperatury obiektów lub scenerii z jakimi najczęściej masz do czynienia. Dodatkowo należy wziąć pod uwagę najmniejszą różnicę temperatur, którą chciałbyś mierzyć i wybrać taką kamerę, która ma czułość wystarczającą, by wykryć nawet najmniejsze różnice.
FLIR IBROS szeroki pomiar temperatury
Rys.11 Szeroki zakres mierzonych temperatur

11. Szukaj kamer z rozbudowanym, wieloletnim programem gwarancyjnym by chronić swoją inwestycję w jak najdłuższej perspektywie.

Renomowani producenci kamer termowizyjnych chcą mieć pewność, że Twoja kamera termowizyjna będzie dobrze służyć przez wiele lat. Z tego powodu niektórzy oferują rozszerzone gwarancje. Programy takie jak gwarancja FLIR idą nawet o krok dalej, oferując dwa lata gwarancji na części i robociznę, pięcioletnią na akumulatory, i dziesięć lat na czujnik / detektor podczerwieni/ termowizyjny. Jakąkolwiek kamerę wybierzesz, upewnij się, że otrzymasz z nią solidną gwarancję pozwalającą spać spokojnie.

12. Upewnij się że Twoja inwestycja w kamerę termowizyjną jest wspierana przez poważnego producenta zapewniającego wsparcie techniczne i szkolenie.

Wsparcie i pomoc techniczna dla klienta powinny być koniecznie pod uwagę przy wyborze kamery. Akredytowane centrum szkoleniowe pomoże Ci uzyskać większe korzyści z Twojej inwestycji oraz wpłynie pozytywnie na Twoją karierę zawodową. Certyfikat to dowód na piśmie, że jesteś ekspertem w posługiwaniu się swoją kamerą i interpretacji informacji obrazów w podczerwieni, jakich ona dostarcza. 

 

 

Promocja -15% na wybrane mierniki FLIR Systems!

 

baner

FLIR iBros Super okazje

FLIR MR176

 

Wilgotnościomierz IGM™ z wymiennym higrometrem

FLIR MR176 Promocja

 

 

 

FLIR TG56

 

Pirometr z termoparą typu K

FLIR TG56 Promocja

 

 

FLIR EM54

 

Miernik środowiskowy HVAC/R

FLIR EM54 Promocja

 

 

 

FLIR CM275

 

Miernik cęgowy IGM™ z rejestratorem danych

FLIR CM275 Promocja

 

 

FLIR IM75

 

Miernik izolacji i DMM z funkcją METERLiNK®

FLIR IM75 Promocja

 

FLIR DM66

 

Multimetr TRMS z trybem VFD

FLIR DM66 Promocja

 

 

Więcej o promocji >>

Więcej o promocji >>


FLIR iBros Super okazje

O szczegóły promocji zapytaj autoryzowanego bezpośredniego dystrybutora FLIR Systems w Polsce:

iBros technic  tel: +48 12 3767051 oraz +48 22 2035086   email: Ten adres pocztowy jest chroniony przed spamowaniem. Aby go zobaczyć, konieczne jest włączenie w przeglądarce obsługi JavaScript.   www.termowizja.ibros.pl     www.iBros.pl  

 

FLIR iBros Super okazje

Promocja ograniczona czasowo do 31 grudnia 2019.

 

 

Zestawy do zastosowań elektrycznych

 

 

 

 

 

FLIR E5-XT z miernikiem cęgowym CM72

 

FLIR E6-XT z miernikiem cęgowym CM74

 

FLIR E8-XT z miernikiem cęgowym CM74

 

     Z JAK DUŻEJ ODLEGŁOŚCI MOŻNA MIERZYĆ? 

     Kluczowy jest stosunek odległości do wielkości plamki pomiarowej 

 

 

 

 

Jeśli niedawno została zakupiona kamera termowizyjna, możesz się zastanawiać, z jak dużej odległości można nią wykonywać pomiary. Enewntualnie chcesz kupić kamerę, ale nie masz pewności, która będzie dokładnie mierzyć cel i jednocześnie zmieści się w budżecie. Odpowiedź na pytanie „Z jak dużej odległości można mierzyć?” zależy od takich czynników, jak rozdzielczość, chwilowe pole widzenia (IFOV), obiektywy, wielkość obiektu i innych. 

 

Można to porównać do badania wzroku w gabinecie lekarskim. Gdy spojrzysz na tablicę do badania wzroku z krzesła w gabinecie, możesz być w stanie zobaczyć litery w najmniejszym wierszu – ale z jakiej maksymalnej odległości będzie można je odczytać (czyli „zmierzyć” je)? Jeśli masz doskonały wzrok (20/20), możesz odczytać najmniejsze litery z większej odległości. W takim przypadku wzrok 20/20 odpowiadałby kamerze termowizyjnej o wysokiej rozdzielczości. Jeśli Twój wzrok nie jest doskonały, możesz poprawić go okularami (czyli dodać szkło powiększające do kamery) lub podejść bliżej tablicy do badania wzroku (czyli zmniejszyć odległość od celu). 

 

Ważne jest zrozumienie, czym jest stosunek odległości do wielkości plamki pomiarowej. Stosunek odległości do średnicy plamki pomiarowej to wartość informująca o tym, jak daleko można być od celu o określonych wymiarach i nadal uzyskiwać dokładny pomiar temperatury. 

STOSUNEK ODLEGŁOŚCI DO WIELKOŚCI PLAMKI POMIAROWEJ 1

W miarę oddalania się od mierzonego obiektu tracona jest zdolność do dokładnego pomiaru temperatury

 

 

Aby zapewnić najdokładniejszy pomiar temperatury, na celu powinno być skupionych jak najwięcej pikseli detektora kamery. Zapewni to więcej szczegółów na obrazie termowizyjnym. W miarę oddalania się od mierzonego obiektu tracona jest zdolność do dokładnego pomiaru temperatury. Im większa rozdzielczość kamery (większa liczba pikseli w celu), tym bardziej prawdopodobne jest uzyskanie dokładnych wyników z większej odlegości. Zoom cyfrowy nie poprawia dokładności, więc wyższa rozdzielczość lub wąskie pole widzenia ma kluczowe znaczenie. 

 

Załóżmy, że chcesz uzyskać dokładny pomiar temperatury 20-milimetrowego celu znajdującego się w odległości 15 metrów od kamery termowizyjnej. Jak dowiedzieć się, czy dana kamera może to zrobić? Trzeba sprawdzić dane techniczne kamery – pole widzenia i rozdzielczość. Załóżmy, że rozdzielczość kamery wynosi 320 × 240, a obiektyw ma 24-stopniowe pole widzenia w poziomie. 

 

STOSUNEK ODLEGŁOŚCI DO WIELKOŚCI PLAMKI POMIAROWEJ 2

IFOV jest rzutem kątowym jednego piksela detektora na obrazie w podczerwieni. Powierzchnia, jaką może widzieć każdy piksel, zależy od odległości od celu dla danego obiektywu.

 

 

Najpierw trzeba obliczyć IFOV w miliradianach (mrad) z następującego wzoru: 

IFOV = (FOV/liczba pikseli*) × [(3,14/180)(1000)]

* Użyj liczby pikseli, która odpowiada polu widzenia Twojego obiektywu (w poziomie/ pionie) 

 

Jako że obiektyw ma 24 stopnie FOV w poziomie, należy podzielić 24 przez poziomą rozdzielczość kamery w pikselach – w tym przypadku 320. Następnie trzeba pomnożyć tę liczbę przez 17,44, co jest wynikiem (3,14/180) (1000) z powyższego równania. 

(24/320) × 17,44 = 1,308 mrad

Wiedząc, że IFOV wynosi 1,308 mrad, trzeba obliczyć IFOV w milimetrach z następującego równania:

IFOV (mm): (1,308/1000) × 15 000* mm = 19,62 mm

* Odległość od celu 

 

Co oznacza ta liczba? Stosunek odległości do średnicy plamki pomiarowej wynosi 19,62:15 000. Ta wartość jest mierzalną wielkością jednego piksela (1 × 1). Mówiąc w uproszczeniu, wynik informuje, że kamera może zmierzyć plamkę pomiarową 19,62 mm z odległości 15 metrów.  

 

Ten pomiar pojedynczego piksela nazywany jest „teoretycznym stosunkiem odległości do wielkości plamki pomiarowej ” (SSR). Niektórzy producenci podają teoretyczny stosunek odległości do średnicy plamki pomiarowej w danych technicznych produktów. Chociaż można to uznać za rzeczywisty stosunek odległości do średnicy plamki pomiarowej, jest to zwodnicze, ponieważ nie musi to być najbardziej dokładna wartość. Jest tak dlatego, że informuje tylko o temperaturze bardzo małego obszaru w obrębie pojedynczego piksela. Jak wspomniano wcześniej, w celu zapewnienia największej dokładności należy uzyskać jak najwięcej pikseli w celu. Jeden lub dwa piksele mogą wystarczyć, aby jakościowego ustalenia , że istnieje różnica temperatur, ale mogą nie wystarczyć do zapewnienia dokładnego odwzorowania średniej temperatury danego obszaru.  

 

STOSUNEK ODLEGŁOŚCI DO WIELKOŚCI PLAMKI POMIAROWEJ 3

W idealnej sytuacji odwzorowywany cel powinien pokrywać co najmniej jeden piksel.W celu zapewnienia dokładniejszych odczytów należy pokryć większy obszar, aby uwzględnić dyspersję optyczną rzutowania. 

 

 

Pomiar jednopikselowy może być niedokładny z różnych powodów:

  • Kamery termowizyjne mogą mieć złe piksele.
  • Obiekty odbijają światło – zadrapanie lub odbicie światła słonecznego mogłoby spowodować wynik fałszywie pozytywny oraz fałszywie wysoki odczyt.
  • Obiekt gorący – na przykład łeb śruby – może być niemalże tej samej szerokości, co piksel, ale piksel jest kwadratowy, a łeb śruby sześciokątny.
  • Żaden układ optyczny nie jest doskonały – zawsze występują jakieś zniekształcenia, które wpływają na pomiary. 

 

Ze względu na zjawisko zwane dyspersją optyczną promieniowanie z bardzo małej powierzchni nie zapewni jednemu elementowi detektora wystarczająco dużo energii, aby umożliwić uzyskanie poprawnej wartości. Należy upewnić się, że gorący obszar odczytu wartości punktowej ma co najmniej 3 × 3 piksele. Wystarczy pomnożyć teoretyczny stosunek odległości do wielkości plamki pomiarowej w milimetrach przez trzy, co pozwoli uzyskać stosunek plamki pomiarowej 3 × 3 piksele zamiast 1 × 1. Taka wartość będzie dokładniejsza.  

 

Po pomnożeniu IFOV w mm (19,62) przez 3 uzyskujemy 58,86 mm.

 

Oznacza to, że można zmierzyć obiekt o średnicy 58,86 milimetra z odległości 15 metrów. 

 

A teraz załóżmy, że chcemy zmierzyć obiekt o średnicy 20 milimetrów. Z jakiej maksymalnej odległości można dokładnie zmierzyć powierzchnię tej wielkości? Trzeba zastosować mnożenie krzyżowe: 

IFOV w mm: Odległość w mm

(15 m = 15 000 mm)

58,86:15 000

20 mm : x

15000*20 = 58,86*x

300 000/58,86 = x

x = 5096,8 mm, czyli około 5,1 m

 

Kamerą o rozdzielczości 320 × 240 pikseli można zmierzyć obiekt o średnicy 20 mm z odległości około 5 m od celu.

 

STOSUNEK ODLEGŁOŚCI DO WIELKOŚCI PLAMKI POMIAROWEJ 4

Ilustracja pola widzenia przy 2,6 mrad i 1,36 mrad. Udostępniona przez Infrared Training Center.

 

 

Inni producenci mogą nie używać tej wartości, gdy omawiają IFOV lub SSR, ale w praktyce zapewnia ona dokładniejszy odczyt temperatury anomalii. 

 

Stosunek odległości do średnicy plamki pomiarowej jest ważny, ponieważ pomaga zrozumieć, czy kamera termowizyjna jest w stanie dokładnie mierzyć temperaturę z wymaganej odległości. Jeśli chcesz mierzyć małe cele z dużej odległości, znajomość stosunku odległości do wielkości plamki pomiarowej czyli odległości dokładnego pomiaru ma kluczowe znaczenie. 

 

Jeśli planujesz badanie termograficzne, zastanów się, czy możesz podejść wystarczająco blisko celu, aby uzyskać dokładny odczyt. Dokładny znaczy tyle, co wystarczająco dobry dla prawidłowej interpretacji. Niekoniecznie nawet musi to oznaczać „w zakresie dokładności kamery”. Jeśli nie uwzględnisz stosunku odległości do średnicy plamki pomiarowej, możesz uzyskać odczyt odchylony o kilkadziesiąt, a nawet kilkaset stopni.

 

 

 

Dzięki kamerze termowizyjnej możemy stwierdzić, że udało nam się odtworzyć coś co na przestrzeni milionów lat stworzyła natura. Może dziwić porównanie urządzenia technologicznego do natury jednak wytłumaczenie jest proste, lecz aby to zrozumieć musimy przyjrzeć się zasadzie działania kamery termowizyjnej oraz oka.



Światło (promieniowanie widzialne) jest to ta część widma elektromagnetycznego, która powoduje bezpośrednio wrażenia wzrokowe u człowieka. Światło odbite od przedmiotów przechodzi przez układ optyczny tworząc na siatkówce obraz, który jest pomniejszony i odwrócony. Następniepoprzez nerw wzrokowy i dalsze składniki drogi wzrokowej do mózgu przekazywane są impulsy nerwowe. W widmie światła widzialnego istnieją przedziały o różnych długościach fal, któreoko ludzkie odbiera jakowrażenie różnych barw.

 

 

FLIR iBros Budowa ludzkiego oka

Rys. 1 Budowa ludzkiego oka

Oko ludzkie umożliwia nam zdobywanie bardzo dużej ilości informacji o otoczeniu, o odległościach, kształtach, ruchach oraz barwach, dzięki czemu możemy bezpiecznie poruszać się w przestrzeni oraz analizować obserwowaną sytuację.

FLIR iBros Podczerwień

Rys.2 Zakres fali widzialnych

 

Jednak nie wszystkie organizmy widzą tak samo, natura dostosowała sposób widzenia do potrzeb poszczególnych organizmów. Węże posiadają możliwość widzenia fal podczerwonych, za pomocą jamek termicznych, dzięki którym wąż wykrywa nawet minimalne zmiany temperatury.
Zmiany te wywołane są przez stałocieplne zwierzęta (myszy, ptaki), a także te zmiennocieplne (jaszczurki, żaby) ponieważ temperatura ich ciała jest nieco wyższa od temperatury otoczenia. Jamki skierowane są tak, aby wąż mógł określić odległość jak i wielkość swojej ofiary nawet w warunkach ograniczonej widoczności lub ciemną nocą. Organy te wykrywają różnice rzędu 0.001°C.

FLIR iBros zdjęcie termowizyjne ptaka


Rys. 3 Różnice ciepła na ciele ptaka

Teraz już możemy zrozumieć zasadę działania kamery termowizyjnej, która naśladuje i łączy pracę oka i jamek termicznych węży. Promieniowanie cieplne emitowane jest przez istoty żywe, zbiorowisko kropel cieczy, powierzchnię ciała stałego w obserwowanej przestrzeni czyli przez każdy obiekt, którego temperatura przekracza zero absolutne(-273, 15°C).

To promieniowanie przechodzi przez soczewkę i skupia się na detektorze. Współczesne detektory budowane są jako matryce pojedynczych detektorów, zwanych pikselami. Każdy z poszczególnych detektorów przetwarza padające na niego promieniowanie na sygnał elektryczny, który zmienia się zależnie od intensywności promieniowania podczerwonego. Sygnał ten jest przekształcany do postaci cyfrowej i wtedy już widzimy go na wyświetlaczu kamery (zdjęcie termowizyjne, termogram).

Kamera termowizyjna może być wykorzystana przez człowieka do różnych celów. Dzięki niej możemy zidentyfikować wady izolacji termicznej budynków,
uzyskać wiele informacji na temat wykonania prac budowlanych i jakości użytych materiałów oraz strat ciepła w naszych domach. Pozwala na łatwą lokalizacja rur
z ciepłą wodą oraz wycieków i nieszczelności, miejsc pęknięć sieci grzewczej i wodociągowej. Kamera termowizyjna czyni nas tak przebiegłym i skutecznym w oszczędzaniuenergii cieplnej jak przebiegły i sprytny potrafi być wąż w złapaniu i pochłanianiu „ciepła” ;)

FLIR iBros mostki termiczne budynku

Rys.4 Różne temperatury na elewacji budynku pozwalają na wykrycie wad.

Patrycja Surówka

Źródła:
Rys.1 pobrane z kck.wikidot.com
Rys2.-Rys.4 własne materiały

 

Czy można używać kamer termowizyjnych do wykrywania wirusa lub infekcji? Szybka odpowiedź na to pytanie brzmi: nie, ale  można wykorzystać kamery termowizyjne do wykrywania podwyższonej temperatury ciała. Kamery termowizyjne FLIR były używane w miejscach publicznych, takich jak lotniska, terminale kolejowe, firmy, fabryki i koncerty, jako skuteczne narzędzie do pomiaru temperatury powierzchni skóry i identyfikacji osób z podwyższoną temperaturą ciała (EBT – z ang. Elevated Body Temperature).

 

 

 

 

W świetle globalnego wybuchu koronawirusa (COVID-19), który obecnie jest oficjalnie określony jako pandemia, społeczeństwo jest głęboko zaniepokojone rozprzestrzenianiem się infekcji i szukaniem narzędzi, które pomogą spowolnić i ostatecznie powstrzymać rozprzestrzenianie się wirusa. Chociaż żadna kamera termowizyjna nie może wykryć ani zdiagnozować koronawirusa, kamery FLIR mają długą historię wykrywania podwyższonej temperatury ciała (np. osób z goraczką) w miejscach publicznych o dużym natężeniu ruchu poprzez szybkie indywidualne kontrole.

 

 

Jeśli temperatura skóry w kluczowych obszarach (szczególnie w kąciku oka i czoła) jest wyższa niż średnia temperatura, można wybrać osobę z takimi objawami do dodatkowego badania kontrolnego. Identyfikacja osób z podwyższoną temperaturą ciała za pomocą pomiaru temperatury powierzchni skóry (EBT), które mogą być dalej badane za pomocą testów diagnostycznych specyficznych dla wirusów, może pomóc w zmniejszeniu lub spowolnieniu rozprzestrzeniania się wirusów i infekcji. 

 

obrazowanie termiczne png1

Kamera termowizyjna musi być w stanie zobrazować wewnętrzny kącik oka (kanał łzowy) oka podczas badania pod kątem EBT. Poproś badanych o usunięcie okularów lub innej przeszkody oka przed badaniem.

 

Korzystając z kamer termowizyjnych, kontrolerzy mogą być bardziej dyskretni, wydajni i skuteczni w identyfikowaniu osób, które wymagają dalszego badania kontrolnego za pomocą testów specyficznych dla wirusów. Różnorodne instytucje, w tym agencje transportowe, firmy, fabryki i osoby udzielające pierwszej pomocy, stosują badania obrazowania termicznego jako metodę wykrywania podwyższonej temperatury ciała EBT oraz w ramach ochrony zdrowia i badań kontrolnych pracowników (EH&S).

 

W szczególności porty lotnicze aktywnie wykorzystują kamery termowizyjne FLIR w ramach kontroli bezpieczeństwa pasażerów i załóg lotniczych. Procedury kontroli bezpieczeństwa wdrożone na lotniskach i w innych miejscach publicznych to tylko pierwszy krok w wykrywaniu możliwej infekcji: to szybki sposób kontroli bezpieczeństwa dla każdego, kto może być chory. Zawsze muszą być też kontynuowane dalsze kontrole, zanim władze zdecydują poddać osobę kwarantannie.

 

 

obrazowanie termiczne png2

Podczas kontroli pod kątem EBT za pomocą kamery termowizyjnej FLIR ważne jest, aby monitorować jedną osobę na raz, stojącą nie dalej niż 1-2 metry od kamery.

 

 

Oprogramowanie do badań EBT

Z myślą o jak najlepszej funkcjonalności kamer termowizyjnych pod kątem kontroli EBT, FLIR przygotował nowe oprogramowanie sprzętowe dla serii T5xx / T840 / Exx (wkrótce również dla serii T1K oraz T860) ze zaktualizowaną funkcją przesiewania EST - Elevated Skin Temperature (podwyższonej temperatury skóry) w kamerze.

Celem tego ulepszenia jest pomoc w przeprowadzaniu dokładniejszej kontroli oraz sprawienie, aby kontrola była jeszcze bardziej jednoznaczna i przyjazna dla użytkownika.

 

 

Nowa wersja oprogramowania zawiera następujące funkcje:

• Nowe wartości domyślne (paleta czarno-biała, dozwolone odchylenie itp.)

• Izoterma jest aktywowana i podłączona do progu alarmowego w celu wskazania gorących punktów

• Operator zostanie poproszony o pobranie próbek w celu uzyskania większej dokładności podczas badania przesiewowego

• Kontur/sylwetka w celu lepszej powtarzalności/dokładności

 

Wraz z zestawami kamer dostarczane są również powiadomienia dla użytkownika, zawierające dalsze instrukcje korzystania z trybu Screening oraz zaleceniami, które pomogą w tej aplikacji.

 

FLIR EBT

 

 

 

Jakie kamery FLIR są używane do obrazowania termicznego?

 

Podczas, gdy rządy poza Stanami Zjednoczonymi mogą wybierać spośród wielu różnych kamer, FLIR posiada dokumentację 510 (k) (K033967) w amerykańskiej Agencji ds. Żywności i Leków (FDA) dla wybranych modeli kamer do wykorzystania jako bezkontaktowe narzędzia kontrolne do wykrywania różnic w temperatury powierzchni skóry. Do tych kamer należą seria FLIR Exx, seria FLIR T, FLIR A320Extech IR200

 

Takie funkcje możliwe do wykorzystania w przedmiotowych badaniach mają m.in. modele: FLIR Exx (m.in. model E53, E75, E85, E95), seria FLIR T (m.in. model T530, T540, T840, T860, T620T640, A320), które dystrybuuje w Polsce IBROS TECHNIC.

 

Aby uzyskać więcej informacji na temat kamer FLIR do celów kontroli temperatury skontaktuj się z bezpośrednim autoryzowanym dystrybutorem kamer termowizyjnych FLIR Systems w Polsce:

iBros technic, tel: +48 12 3767051, Ten adres pocztowy jest chroniony przed spamowaniem. Aby go zobaczyć, konieczne jest włączenie w przeglądarce obsługi JavaScript.http://termowizja.ibros.pl 

 

W czasie targów mogliście Państwo zobaczyć i przetestować najnowsze modele profesjonalnych kamer termowizyjnych i mierników na podczerwień marki FLIR Systems, anemometrów, balometru oraz wielu innych mierników do regulacji instalacji wentylacji renomowanej marki TSI Inc, jak również innych narzędzi kontrolno-pomiarowych (kamery inspekcyjne, pirometry termowizyjne, wilgotnościomierze).

Było nam bardzo miło spotkać się z Państwem i porozmawiać. Jeśli zainteresowała Państwa oferta naszej firmy serdecznie zapraszamy do kontaktu. Jako autoryzowany i bezpośredni dystrybutor renomowanych producentów urządzeń pomiarowych w Polsce chętnie pomożemy w doborze najlepszego rozwiązania dostosowanego do Państwa potrzeb.

Do zobaczenia za rok na kolejnej edycji Forum Wentylacja – Salon Klimatyzacja!

 

Odzwiedź iBros technic na Forum Wentylacja – Salon Klimatyzacja 2020

 

 

W dniach 3-4 marca 2020 roku firma iBros technic weźmie udział w 18 Edycji Targów Forum Wentylacja – Salon Klimatyzacja 2020, które są najważniejszym wydarzeniem w branży wentylacyjnej, klimatyzacyjnej i chłodniczej.

 

 

 

Wszystkie zainteresowane osoby zapraszamy do odwiedzin stoiska nr 119 firmy iBros technic. Podczas targów możliwe będzie obejrzenie i testowanie najnowszych kamer termowizyjnych marki FLIR Systemsbalometru i mierników do regulacji instalacji wentylacyjnych TSI Incorporated, jak również innych, wybranych narzędzi kontrolno-pomiarowych dostępnych w ofercie iBros technic (w tym kamery inspekcyjne, pirometry termowizyjne, wilgotnościomierze).

iBros technic będzie na najbliższych targach promował i prezentował mierniki TSI, kamery termowizyjne FLIR Systems, przetworniki i czujniki Produal oraz inne.

Będzie nam miło spotkać się i porozmawiać z Państwem.

Zapraszamy!

 

Miejsce targów:  

Centrum Targowo-Kongresowe Global EXPO

ul. Modlińska 6D,  03-216 Warszawa

Nr stoiska iBros technic: 119

 

Godziny:

3 marca 2020: godz. 09.00 – 17.00

4 marca 2020: godz. 09.00 – 16.00

 

IBROS TSI FLIR PD 2018 1000px

 

MIERNIK WILGOTNOŚCI Z SONDĄ KULOWĄ Z BLUETOOTH®

FLIR MR59

 

FLIR MR59 to bezpinowy miernik z łącznością bezprzewodową, który zapewnia wygodę przeglądania odczytów na żywo z urządzenia mobilnego za pośrednictwem aplikacji FLIR Tools® Mobile. Dzięki czujnikowi w kształcie kulki użytkownicy mogą w krótkim czasie testować duży obszar bez pozostawiania śladów, łatwo mierzyć w narożnikach i wokół listew przypodłogowych, jak również wykrywać problemy pod powierzchnią.

 

 >> Pobierz kartę techniczną FLIR MR59

 

FLIR MR59

 

 

Cechy i zalety

EFEKTYWNIE LOKALIZUJ UKRYTE PROBLEMY Z WILGOCIĄ
Szybkie i nieniszczące badania dużych obszarów

  • Z łatwością przesuwaj miernik nad i wokół obiektów na powierzchni pomiarowej za pomocą czujnika kulkowego

  • Utwórz mapę termiczną badanego obszaru i podążaj ścieżką migracji do ukrytego źródła wilgoci

  • Zidentyfikuj potencjalne problemy z wilgocią do 100 mm (4 cale) pod powierzchnią

 

 

ŁATWA I SZYBKA KONTOLA W KAŻDYM MIEJSCU
Zaprojektowany tak, aby Twoja praca była łatwiejsza i bardziej wydajna

  • Połącz bezprzewodowo miernik z FLIR Tools Mobile, aby wyświetlić odczyty na urządzeniu mobilnym
  • Praca przy słabym oświetleniu z podświetlanym wyświetlaczem i jasnym światłem roboczym

  • Używaj z wysięgnikiem przedłużającym MR04, aby zmniejszyć potrzebę stosowania drabiny lub zoptymalizować ergonomię dla „wysokich” i „niskich” celów pomiarowych (akcesoria nie wchodzą w skład zestawu)

 

POLEGAJ NA MIERNIKU MR59 W SWOJEJ PRACY
Używaj wytrzymały, przetestowany pod kątem upadków miernik do każdego zadania

  • Wykrywaj wilgoć w szerokiej gamie popularnych materiałów budowlanych
  • Otrzymuj stabilne, powtarzalne odczyty. Uchwyt miernika został zaprojektowany tak, aby ręce nie przeszkadzały w pomiarach

  • Skorzystaj z ulepszeń produktu, aktualizując oprogramowanie układowe w razie potrzeby za pośrednictwem portu micro USB (znajdującego się w komorze baterii)

 

FLIR MR 59

 

 

Specyfikacja

Specyfikacja techniczna FLIR MR59:

Pomiar wilgotności

Zakres

Dokładność

Wilgotność

0-100 %

Pomiar względny

Głębokość wykrywania pomiaru

Do 100 mm (4 cale) w zależności od testowanego materiału

Informacje ogólne

Łączność

Bluetooth BLE

Protokół komunikacyjny: METERLiNK®

Światło robocze

Białe LED

Wyświetlacz

Podświetlany, wielofunkcyjny wyświetlacz LCD

Zasada pomiaru

Pojemnościowy (nieinwazyjny)

Gwarancja

3 lata (ograniczona)

Typ baterii

9 V bateria

Żywotność baterii

Typowo 40 godzin bez światła roboczego

Wskaźnik stanu baterii

4-paskowa ikona baterii (100% do wyczerpania)

Automatyczne wyłączanie zasilania (APO)

Po 30 minutach

Wilgotność / temperatura pracy

90%, 0°C do 30°C (32°F do 86°F)

75%, 30°C do 40°C (86°F do 104°F)

45%, 40°C do 50°C (104°F do 122°F)

Stopień ochrony

IP40

Zgodność z wymogami bezpieczeństwa

CE, RCM, FCC/IC

Test upadku

2 m

Materiał obudowy

Odporny na uderzenia plastik

Waga

245 g

Wymiary

240,5 x 67 x 38 mm

 

Dane techniczne mogą ulec zmianie bez powiadomienia. 

Najnowsze dane techniczne są dostępne na stronie www.flir.com

 

FLIR MR 59

Wideo

Miernik wilgotności z sondą kulową FLIR MR59

 

 

 

 

Właściwości

Kamera termowizyjna FLIR serii E xx/E xx bx (dla budownictwa)
Najszybszy sposób, aby uchwycić, analizować i udostępnić obrazy termiczne.

FLIR E50bx - 43 200 pikseli
Rozdzielczość - 240 x 180
MSX - obrazowanie multispektralne
Alarmy: punktu rosy, izolacji
Ręczne ustawienie ostrości
Obiektywy do dalszej rozbudowy
Odporność na upadek z 2 m

Unikalna gwarancja FLIR Systems: 2-5-10

Odswieżona seria kamer termowizyjnych E xx, łączy w sobie wysoka jakość wykonania z łatwością obsługi. Seria E jest zaprojektowana do diagnozowania problemów instalacji elekrtycznych, budowlanych łatwiej, bardziej wydajniej i skuteczniej. Pomagają w tym następujace wlaściwości: rozdzielczość 320 × 240 przy 60 Hz do przechwytywania w czasie rzeczywistym, dzięki czemu nic nie umknie, jasny ekran dotykowy z dużą ilością narzędzi, które pomogą Ci precyzyjnie dostroić szybko analizować obrazy, Wi-Fi do transferu obrazów i danych do urządzenia mobilnego w celu dalszej analizy, raportowania i natychmiastowego dzielenia się z klientami potrzebującymi detekcji strat energii, pomocy w diagnozie instalacji HVAC, problemów z instalacjami elektrycznymi. Zbuduj swój biznes i swoją wiarygodność w oparciu o kamerę termowizyjna z serii E xx. W ofercie autoruzowanego dystrybutora amerykańskiej firmy FLIR Systems - iBros technic.

Specyfikacje

Specyfikacja techniczna Kamery termowizyjnej E50bx:

  FLIR E50 FLIR E50bx
Cena    
Dokładność ±2% lub 2°C ±2% lub 2°C
Rozdzielczość detektora 43200 (240 x 180) 43200 (240 x 180)
Czułość termiczna <0.05°C <0.045°C
Zakres pomiaru temperatury -20°C do 650°C (-4°F to 1,202°F) -20°C do 120°C (-4°F to 248°F)
Wielkość wyświetlacza 3.5”/Panoramiczny 3.5”/Panoramiczny
Wizjer Nie Nie
Tryby pomiarowe 5 trybów: 3 punkty; 3 pola (Min/Max); Izoterma (powyż./poniż.); Auto punkt ciepły/zimny; Delta T 5 trybów: 3 punkty; 3 pola (Min/Max); Izoterma (powyż./poniż.); Auto punkt ciepły/zimny; Delta T
Punkty pomiarowe 3 przesuwalne 3 przesuwalne
Częstotliwość odświeżania 60 Hz 60 Hz
FOV 25° × 19° 25° × 19°
FOV taki jak w obiektywie Nie Nie
Opcjonalne obiektywy 2: 15° Tele, 45° Szer. 2: 15° Tele, 45° Szer.
Ustawienie ostrości Manualne Manualne
Ciągły auto-fokus Nie Nie
Minimalna odległość ostrzenia 0.4 m (1.31 ft.) 0.4 m (1.31 ft.)
Zdjęcie radiometryczne JPEG zapisane na kartę SD Tak Tak
Film MPEG4 zapisany na kartę SD (nie radiometryczny) Tak Tak
Palety 12: Arktyczna, Szara, Żelazo, Lawa, Tęcza, Tęcza HC (oraz wszystkie palety z odwróconymi kolorami) 12: Arktyczna, Szara, Żelazo, Lawa, Tęcza, Tęcza HC (oraz wszystkie palety z odwróconymi kolorami)
Oprogramowanie FLIR Tools Tak Tak
Raport w kamerze Nie Nie
Czas pracy na baterii >4 godzin >4 godzin
Kamera wbudowana 3.1 MP 3.1 MP
Wbudowane podświetlenie LED Tak Tak
Ekran dotykowy Tak Tak
Zoom cyfrowy
Alarm izolacji No Tak
Alarm punktu rosy No Tak
Połączenie MeterLink® Tak Tak
Wskaźnik laserowy Tak Tak
Indykator wskaźnika na obrazie IR Tak Tak
Kompas Nie Nie
GPS Nie Nie
Korekcja dla okna wziernikowego IR Window Tak Tak
Delta T Tak Tak
Obraz w obrazie Dostosowanie PIP Dostosowanie PIP
Fuzja termiczna Nie Nie
MSX™ Obrazowanie multispektralne Tak Tak
Szkic na ekranie Nie Nie
Szkic na zdjęciu IR Nie Nie
Notatki tekstowe/głosowe Tak Tak
Oprogramowanie FLIR Tools Mobile na Apple® & Android™ Tak Tak
Streaming video Tak Tak
Zdalne sterowanie FLIR App Remote Control Nie Nie
Odporność na upadek (2 metry/6.6 stóp) Tak Tak
Waga (włącznie z bateriami) 0.825 kg (1.82 lbs) 0.825 kg (1.82 lbs)

 

Zastosowanie:

  • Wykonywanie pomiarów testowych instalacji,
  • Okresowe przeglądy instalacji - utrzymanie ruchu
  • Wyszukiwanie problemów z urządzeniami wentylacji, klimatyzacji
  • Znajdowanie usterek związanych z instalacjami sanitarnymi
  • Audyty energetyczne budynków

 Zalety:

  • łatwa obsługa,
  • odporna na uszkodzenia
  • instrukcja obsługi w języku polskim
  • podświetlane przyciski
  • niska waga 865 g
  • dotykowy monitor
  • 10 lat gwarancji na detektor
  • 2 lata gwarancji na kamerę
  • 5 godzin pracy na zasilaniu bateryjnym
  • certyfikat kalibracji w cenie zestawu

Zrzuty ekranów

Przykładowe zrzuty ekranów

 


Zdjęcia aplikacji

Przykładowe zdjęcia aplikacji kamery termowizyjnej E xx:

eseries1 eseries1
eseries2 eseries2
eseries4 eseries4
eseries5 eseries5
meterlink meterlink

FLIR CM4X Seria profesjonalnych mierników cęgowych 400 A True RMS z końcówką Accu-Tip™

 

Seria mierników cęgowych FLIR CM4X True RMS obejmuje trzy profesjonalne i niedrogie mierniki z funkcją pomiaru rzeczywistej wartości skutecznej, przeznaczone dla elektryków, którzy dokonują pomiarów w instalacjach technicznych i mieszkaniowych. Mierniki cęgowe CM42 i CM44 służą do pomiarów prądu przemiennego, natomiast miernik CM46 umożliwia pomiary prądu przemiennego, jak i stałego, odpowiednio do potrzeb użytkownika. Każdy miernik jest wyposażony w jasny, podświetlany wyświetlacz, ułatwiający pracę wewnątrz szaf elektrycznych. Technologia Accu-Tip™ umożliwia dokładniejszy pomiar natężenia prądu w cieńszych przewodach, z dokładnością do dziesiątej części jednostki pomiarowej. Wszystkie modele oferują rejestrację wartości maksymalnych, minimalnych i średnich (MAX/MIN/AVG), pomiar częstotliwości oraz wykrywanie pola elektrycznego, co pozwala na stwierdzenie obecności napięcia i określenie względnej siły pola. Wykonana metodą natryskową, łatwa do uchwycenia obudowa sprawia, że mierniki cęgowe z serii CM4X mogą wytrzymać upadek z wysokości dwóch metrów, a jednocześnie dzięki ich niewielkim rozmiarom można je zawsze zabrać ze sobą, w torbie narzędziowej.

 

Zalety

Precyzyjne, dokładne pomiary

Wysoka dokładność i duża rozdzielczość pomiarów w małych tablicach rozdzielczych

• Accu-Tip umożliwia dokładniejsze pomiary natężenia prądu w przewodach o mniejszym przekrojucm4x

• Rejestracja wartości maksymalnych, minimalnych i średnich oraz pomiary częstotliwości i diod

• Przechowywanie danych, ustawianie zera jako wartości odniesienia i filtr dolnoprzepustowy (VFD)

 

Godny zaufania projekt

Solidna konstrukcja na lata użytkowania

• Odporność na upadek z wysokości 2 metrów i przystosowanie do pracy w temperaturze od -10 do 50°C (od 14 do 122°F)

• Duży i jasny, podświetlany wyświetlacz ułatwia odczytywanie wyników

• Wytrzymała, łatwa do uchwycenia obudowa wykonana metodą natryskową ma niewielkie wymiary, co ułatwia przenoszenie urządzenia

 

Profesjonalne parametry w rozsądnej cenie

Wszystkie najbardziej potrzebne funkcje

• Pomiar przewodów o średnicy do 30 mm

• Wykrywanie pola elektrycznego (NCV) umożliwia sprawdzanie obecności napięcia i względnej siły pola, dla zachowania bezpieczeństwa

• Profesjonalne mierniki cęgowe z funkcją pomiaru rzeczywistej wartości skutecznej

 

 

Specyfikacja

PARAMTERY TECHNICZNE

cm4x parametry techniczne

Kontakt dystrybutor FLIR w Polsce

©iBros. Wszelkie prawa zastrzeżone.